Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273675

RESUMO

BackgroundSARS-CoV-2 mutations conferring escape from neutralizing antibodies can arise in immunocompromised patients with prolonged infection, but the conditions that facilitate immune escape are still not fully understood. MethodsWe characterized endogenous immune responses, within-host SARS-CoV-2 evolution, and autologous neutralization of the viral variants that arose in five immunocompromised patients with prolonged infection and B cell deficiencies. ResultsIn two patients treated with the monoclonal antibody bamlanivimab, viral resistance to autologous serum arose early and persisted for several months, accompanied by ongoing evolution in the spike protein. These patients exhibited deficiencies in both T and B cell arms, and one patient succumbed to disease. In contrast, we did not observe spike mutations in immunologically important regions in patients who did not receive exogenous antibodies or who received convalescent plasma and had intact T cell responses to SARS-CoV-2. ConclusionsOur results underscore the potential importance of multiple factors - the absence of an effective endogenous immune response, persistent virus replication, and selective pressure such as single-agent bamlanivimab - in promoting the emergence of SARS-CoV-2 mutations associated with immune evasion. These findings highlight the need for larger clinical studies in immunocompromised populations to better understand the ramifications of different therapies. Our results also confirm that patients with B cell deficiencies can elicit effector T cells and may suggest an important role for T cells in controlling infection, which is relevant to vaccines and therapeutics.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-432046

RESUMO

The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies to neutralize these variants. We compared antibody binding and live virus neutralization of sera from naturally infected and spike mRNA vaccinated individuals against a circulating SARS-CoV-2 B.1 variant and the emerging B.1.351 variant. In acutely-infected (5-19 days post-symptom onset), convalescent COVID-19 individuals (through 8 months post-symptom onset) and mRNA-1273 vaccinated individuals (day 14 post-second dose), we observed an average 4.3-fold reduction in antibody titers to the B.1.351-derived receptor binding domain of the spike protein and an average 3.5-fold reduction in neutralizing antibody titers to the SARS-CoV-2 B.1.351 variant as compared to the B.1 variant (spike D614G). However, most acute and convalescent sera from infected and all vaccinated individuals neutralize the SARS-CoV-2 B.1.351 variant, suggesting that protective immunity is retained against COVID-19.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20076737

RESUMO

We report preliminary data from a cohort of adults admitted to COVID-designated intensive care units from March 6 through April 17, 2020 across an academic healthcare system. Among 217 critically ill patients, mortality for those who required mechanical ventilation was 29.7% (49/165), with 8.5% (14/165) of patients still on the ventilator at the time of this report. Overall mortality to date in this critically ill cohort is 25.8% (56/217), and 40.1% (87/217) patients have survived to hospital discharge. Despite multiple reports of mortality rates exceeding 50% among critically ill adults with COVID-19, particularly among those requiring mechanical ventilation, our early experience indicates that many patients survive their critical illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...