Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(10): e0241052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091068

RESUMO

Traditional pathogen surveillance methods for white-nose syndrome (WNS), the most serious threat to hibernating North American bats, focus on fungal presence where large congregations of hibernating bats occur. However, in the western USA, WNS-susceptible bat species rarely assemble in large numbers and known winter roosts are uncommon features. WNS increases arousal frequency and activity of infected bats during hibernation. Our objective was to explore the effectiveness of acoustic monitoring as a surveillance tool for WNS. We propose a non-invasive approach to model pre-WNS baseline activity rates for comparison with future acoustic data after WNS is suspected to occur. We investigated relationships among bat activity, ambient temperatures, and season prior to presence of WNS across forested sites of Montana, USA where WNS was not known to occur. We used acoustic monitors to collect bat activity and ambient temperature data year-round on 41 sites, 2011-2019. We detected a diverse bat community across managed (n = 4) and unmanaged (n = 37) forest sites and recorded over 5.37 million passes from bats, including 13 identified species. Bats were active year-round, but positive associations between average of the nightly temperatures by month and bat activity were strongest in spring and fall. From these data, we developed site-specific prediction models for bat activity to account for seasonal and annual temperature variation prior to known occurrence of WNS. These prediction models can be used to monitor changes in bat activity that may signal potential presence of WNS, such as greater than expected activity in winter, or less than expected activity during summer. We propose this model-based method for future monitoring efforts that could be used to trigger targeted sampling of individual bats or hibernacula for WNS, in areas where traditional disease surveillance approaches are logistically difficult to implement or because of human-wildlife transmission concerns from COVID-19.


Assuntos
Acústica , Doenças dos Animais/epidemiologia , Ascomicetos , Quirópteros/microbiologia , Quirópteros/fisiologia , Dermatomicoses/epidemiologia , Dermatomicoses/veterinária , Monitoramento Epidemiológico/veterinária , Vigilância de Evento Sentinela/veterinária , Doenças dos Animais/microbiologia , Animais , Animais Selvagens/microbiologia , Betacoronavirus , COVID-19 , Quirópteros/classificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Dermatomicoses/microbiologia , Florestas , Hibernação , Humanos , Modelos Estatísticos , Montana/epidemiologia , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Estações do Ano , Temperatura
2.
PLoS One ; 13(10): e0205647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379854

RESUMO

Efforts to conserve bats in the western United States have long been impeded by a lack of information on their winter whereabouts, particularly bats in the genus Myotis. The recent arrival of white-nose syndrome in western North America has increased the urgency to characterize winter roost habitats in this region. We compiled 4,549 winter bat survey records from 2,888 unique structures across 11 western states. Myotis bats were reported from 18.5% of structures with 95% of aggregations composed of ≤10 individuals. Only 11 structures contained ≥100 Myotis individuals and 6 contained ≥500 individuals. Townsend's big-eared bat (Corynorhinus townsendii) were reported from 38% of structures, with 72% of aggregations composed of ≤10 individuals. Aggregations of ≥100 Townsend's big-eared bats were observed at 41 different caves or mines across 9 states. We used zero-inflated negative binomial regression to explore biogeographic patterns of winter roost counts. Myotis counts were greater in caves than mines, in more recent years, and in more easterly longitudes, northerly latitudes, higher elevations, and in areas with higher surface temperatures and lower precipitation. Townsend's big-eared bat counts were greater in caves, during more recent years, and in more westerly longitudes. Karst topography was associated with higher Townsend's big-eared bat counts but did not appear to influence Myotis counts. We found stable or slightly-increasing trends over time in counts for both Myotis and Townsend's big-eared bats from 82 hibernacula surveyed ≥5 winters since 1990. Highly-dispersed winter roosting of Myotis in the western USA complicates efforts to monitor population trends and impacts of disease. However, our results reveal opportunities to monitor winter population status of Townsend's big-eared bats across this region.


Assuntos
Quirópteros/microbiologia , Hibernação , Modelos Biológicos , Micoses/epidemiologia , Micoses/veterinária , Estações do Ano , Animais , Meio-Oeste dos Estados Unidos/epidemiologia
3.
Proc Natl Acad Sci U S A ; 107(19): 8644-9, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421473

RESUMO

Many proximate causes of global amphibian declines have been well documented, but the role that climate change has played and will play in this crisis remains ambiguous for many species. Breeding phenology and disease outbreaks have been associated with warming temperatures, but, to date, few studies have evaluated effects of climate change on individual vital rates and subsequent population dynamics of amphibians. We evaluated relationships among local climate variables, annual survival and fecundity, and population growth rates from a 9-year demographic study of Columbia spotted frogs (Rana luteiventris) in the Bitterroot Mountains of Montana. We documented an increase in survival and breeding probability as severity of winter decreased. Therefore, a warming climate with less severe winters is likely to promote population viability in this montane frog population. More generally, amphibians and other ectotherms inhabiting alpine or boreal habitats at or near their thermal ecological limits may benefit from the milder winters provided by a warming climate as long as suitable habitats remain intact. A more thorough understanding of how climate change is expected to benefit or harm amphibian populations at different latitudes and elevations is essential for determining the best strategies to conserve viable populations and allow for gene flow and shifts in geographic range.


Assuntos
Ranidae/crescimento & desenvolvimento , Estações do Ano , Animais , Cruzamento , Feminino , Estágios do Ciclo de Vida/fisiologia , Masculino , Modelos Biológicos , Montana , Dinâmica Populacional , Análise de Regressão , Análise de Sobrevida
4.
Mol Ecol ; 14(2): 483-96, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660939

RESUMO

Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.


Assuntos
Meio Ambiente , Variação Genética , Genética Populacional , Ranidae/genética , Altitude , Análise de Variância , Animais , Primers do DNA , Frequência do Gene , Geografia , Idaho , Repetições de Microssatélites/genética , Montana , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...