Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Leukemia ; 38(5): 969-980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519798

RESUMO

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Assuntos
Modelos Animais de Doenças , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Aneuploidia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Centrossomo/patologia , Diploide
2.
Nat Commun ; 14(1): 7161, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989729

RESUMO

Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteoma , Criança , Humanos , Proteoma/genética , Mutação , Estudos Retrospectivos , Estudos Prospectivos , Medicina de Precisão , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva
3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569447

RESUMO

High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse. While our model recapitulates the non-metastatic neuroblastoma development seen in the parental transgenic strain, transplantation of primary tumor cells from disease-bearing mice enables longitudinal monitoring of neuroblastoma growth at distinct sites in immune-deficient or immune-competent recipients. The transplanted tumors retain GD2 expression through many rounds of serial transplantation and are sensitive to GD2-targeted immune therapy. With more diverse tissue localization than is seen with human cell line-derived xenografts, this novel model for high-risk neuroblastoma could contribute to the optimization of immune-based treatments for this deadly disease.


Assuntos
Neuroblastoma , Camundongos , Humanos , Animais , Proteína Proto-Oncogênica N-Myc , Camundongos Transgênicos , Neuroblastoma/terapia , Neuroblastoma/tratamento farmacológico , Adaptação Fisiológica , Aclimatação
4.
Nat Commun ; 13(1): 2200, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459234

RESUMO

Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Transformação Celular Neoplásica/genética , Dano ao DNA , Feminino , Humanos , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
5.
Nat Commun ; 13(1): 1895, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393420

RESUMO

Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Proteínas da Matriz Extracelular , Receptores de Hialuronatos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Receptores de Hialuronatos/genética , Camundongos , Microambiente Tumoral/genética
6.
Cytometry A ; 101(1): 57-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128309

RESUMO

With the continued poor outcome of relapsed acute lymphoblastic leukemia (ALL), new patient-specific approaches for disease progression monitoring and therapeutic intervention are urgently needed. Patient-derived xenografts (PDX) of primary ALL in immune-deficient mice have become a powerful tool for studying leukemia biology and therapy response. In PDX mice, the immunophenotype of the patient's leukemia is commonly believed to be stably propagated. In patients, however, the surface marker expression profile of the leukemic population often displays poorly understood immunophenotypic shifts during chemotherapy and ALL progression. We therefore developed a translational flow cytometry platform to study whether the patient-specific immunophenotype is faithfully recapitulated in PDX mice. To enable valid assessment of immunophenotypic stability and subpopulation complexity of the patient's leukemia after xenotransplantation, we comprehensively immunophenotyped diagnostic B-ALL from children and their matched PDX using identical, clinically standardized flow protocols and instrument settings. This cross-standardized approach ensured longitudinal stability and cross-platform comparability of marker expression intensity at high phenotyping depth. This analysis revealed readily detectable changes to the patient leukemia-associated immunophenotype (LAIP) after xenotransplantation. To further investigate the mechanism underlying these complex immunophenotypic shifts, we applied an integrated analytical approach that combined clinical phenotyping depth and high analytical sensitivity with unbiased high-dimensional algorithm-based analysis. This high-resolution analysis revealed that xenotransplantation achieves patient-specific propagation of phenotypically stable B-ALL subpopulations and that the immunophenotypic shifts observed at the level of bulk leukemia were consistent with changes in underlying subpopulation abundance. By incorporating the immunophenotypic complexity of leukemic populations, this novel cross-standardized analytical platform could greatly expand the utility of PDX for investigating ALL progression biology and assessing therapies directed at eliminating relapse-driving leukemic subpopulations.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Células Precursoras de Linfócitos B , Animais , Citometria de Fluxo , Xenoenxertos , Humanos , Imunofenotipagem , Camundongos , Transplante Heterólogo
7.
Cancers (Basel) ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36612150

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, with most cases arising from fetal B cell precursor, termed B-ALL. Here, we use immunofluorescence analysis of B-ALL cells to identify centrosome amplification events that require the centrosome clustering pathway to successfully complete mitosis. Our data reveals that primary human B-ALL cells and immortal B-ALL cell lines from both human and mouse sources show defective bipolar spindle formation, abnormal mitotic progression, and cell death following treatment with centrosome clustering inhibitors (CCI). We demonstrate that CCI-refractory B-ALL cells exhibit markers for increased genomic instability, including DNA damage and micronuclei, as well as activation of the cyclic GMP-AMP synthase (cGAS)-nuclear factor kappa B (NF-κB) signalling pathway. Our analysis of cGAS knock-down B-ALL clones implicates cGAS in the sensitivity of B-ALL cells to CCI treatment. Due to its integral function and specificity to cancer cells, the centrosome clustering pathway presents a powerful molecular target for cancer treatment while mitigating the risk to healthy cells.

8.
J Exp Clin Cancer Res ; 40(1): 96, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722259

RESUMO

BACKGROUND: Murine xenografts of pediatric leukemia accurately recapitulate genomic aberrations. How this translates to the functional capacity of cells remains unclear. Here, we studied global protein abundance, phosphorylation, and protein maturation by proteolytic processing in 11 pediatric B- and T- cell ALL patients and 19 corresponding xenografts. METHODS: Xenograft models were generated for each pediatric patient leukemia. Mass spectrometry-based methods were used to investigate global protein abundance, protein phosphorylation, and limited proteolysis in paired patient and xenografted pediatric acute B- and T- cell lymphocytic leukemia, as well as in pediatric leukemia cell lines. Targeted next-generation sequencing was utilized to examine genetic abnormalities in patients and in corresponding xenografts. Bioinformatic and statistical analysis were performed to identify functional mechanisms associated with proteins and protein post-translational modifications. RESULTS: Overall, we found xenograft proteomes to be most equivalent with their patient of origin. Protein level differences that stratified disease subtypes at diagnostic and relapse stages were largely recapitulated in xenografts. As expected, PDXs lacked multiple human leukocyte antigens and complement proteins. We found increased expression of cell cycle proteins indicating a high proliferative capacity of xenografted cells. Structural genomic changes and mutations were reflected at the protein level in patients. In contrast, the post-translational modification landscape was shaped by leukemia type and host and only to a limited degree by the patient of origin. Of 201 known pediatric oncogenic drivers and drug-targetable proteins, the KMT2 protein family showed consistently high variability between patient and corresponding xenografts. Comprehensive N terminomics revealed deregulated proteolytic processing in leukemic cells, in particular from caspase-driven cleavages found in patient cells. CONCLUSION: Genomic and host factors shape protein and post-translational modification landscapes differently. This study highlights select areas of diverging biology while confirming murine patient-derived xenografts as a generally accurate model system.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteoma/metabolismo , Transativadores/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499176

RESUMO

Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.

10.
Cells ; 9(4)2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231069

RESUMO

Hyaluronan is an extracellular matrix component that absorbs water in tissues and engages cell surface receptors, like Cluster of Differentiation 44 (CD44), to promote cellular growth and movement. Consequently, CD44 demarks stem cells in normal tissues and tumor-initiating cells isolated from neoplastic tissues. Hyaluronan mediated motility receptor (HMMR, also known as RHAMM) is another one of few defined hyaluronan receptors. HMMR is also associated with neoplastic processes and its role in cancer progression is often attributed to hyaluronan-mediated signaling. But, HMMR is an intracellular, microtubule-associated, spindle assembly factor that localizes protein complexes to augment the activities of mitotic kinases, like polo-like kinase 1 and Aurora kinase A, and control dynein and kinesin motor activities. Expression of HMMR is elevated in cells prior to and during mitosis and tissues with detectable HMMR expression tend to be highly proliferative, including neoplastic tissues. Moreover, HMMR is a breast cancer susceptibility gene product. Here, we briefly review the associations between HMMR and tumorigenesis as well as the structure and evolution of HMMR, which identifies Hmmr-like gene products in several insect species that do not produce hyaluronan. This review supports the designation of HMMR as a homeostasis, mitosis, and meiosis regulator, and clarifies how its dysfunction may promote the tumorigenic process and cancer progression.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Homeostase , Receptores de Hialuronatos/metabolismo , Meiose , Mitose , Sequência de Aminoácidos , Animais , Proteínas da Matriz Extracelular/química , Humanos , Receptores de Hialuronatos/química , Neoplasias/metabolismo , Neoplasias/patologia
11.
Cell Rep ; 30(11): 3605-3615.e5, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187533

RESUMO

Multiple cancer-related genes both promote and paradoxically suppress growth initiation, depending on the cell context. We discover an explanation for how this occurs for one such protein, Stat3, based on asymmetric cell division. Here, we show that Stat3, by Stathmin/PLK-1, regulates mitotic spindle orientation, and we use it to create and test a model for differential growth initiation. We demonstrate that Integrin-α6 is polarized and required for mammary growth initiation. Spindles orient relative to polar Integrin-α6, dividing perpendicularly in normal cells and parallel in tumor-derived cells, resulting in asymmetric or symmetric Integrin-α6 inheritance, respectively. Stat3 inhibition randomizes spindle orientation, which promotes normal growth initiation while reducing tumor-derived growth initiation. Lipid raft disruption depolarizes Integrin-α6, inducing spindle-orientation-independent Integrin-α6 inheritance. Stat3 inhibition no longer affects the growth of these cells, suggesting Stat3 acts through the regulation of spindle orientation to control growth initiation.


Assuntos
Padrões de Herança/genética , Integrina alfa6/genética , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Modelos Biológicos , Fator de Transcrição STAT3/metabolismo , Animais , Adesão Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Feminino , Humanos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Estatmina/metabolismo , Quinase 1 Polo-Like
12.
EMBO Rep ; 20(9): e47495, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338967

RESUMO

The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.


Assuntos
Caseína Quinase I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Caseína Quinase I/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Mitose/genética , Mitose/fisiologia
13.
PLoS One ; 13(4): e0196011, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684048

RESUMO

CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment.


Assuntos
Células-Tronco Hematopoéticas/citologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Animais , Transplante de Medula Óssea , Proliferação de Células , Eosinófilos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Células Matadoras Naturais/metabolismo , Camundongos , Mutação , Ligação Proteica
14.
Mol Biol Cell ; 29(7): 786-796, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29386294

RESUMO

Mitotic spindle assembly and organization require forces generated by motor proteins. The activity of these motors is regulated by nonmotor adaptor proteins. However, there are limited studies reporting the functional importance of adaptors on the balance of motor forces and the promotion of faithful and timely cell division. Here we show that genomic deletion or small interfering RNA silencing of the nonmotor adaptor Hmmr/HMMR disturbs spindle microtubule organization and bipolar chromosome-kinetochore attachments with a consequent elevated occurrence of aneuploidy. Rescue experiments show a conserved motif in HMMR is required to generate interkinetochore tension and promote anaphase entry. This motif bears high homology with the kinesin Kif15 and is known to interact with TPX2, a spindle assembly factor. We find that HMMR is required to dampen kinesin Eg5-mediated forces through localizing TPX2 and promoting the formation of inhibitory TPX2-Eg5 complexes. In HMMR-silenced cells, K-fiber stability is reduced while the frequency of unattached chromosomes and the time needed for chromosome segregation are both increased. These defects can be alleviated in HMMR-silenced cells with chemical inhibition of Eg5 but not through the silencing of Kif15. Together, our findings indicate that HMMR balances Eg5--mediated forces to preserve the kinetics and integrity of chromosome segregation.

15.
Eur J Immunol ; 48(5): 803-814, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315518

RESUMO

Expansion and death of effector CD8 T cells are regulated to limit immunopathology and cells that escape contraction go on to generate immunological memory. CD44, a receptor for the extracellular matrix component hyaluronan, is a marker of activated and memory T cells. Here, we show with a murine model that the increase in CD44 expression and hyaluronan binding induced upon CD8 T cell activation was proportional to the strength of TCR engagement, thereby identifying the most strongly activated T cells. When CD44-/- and CD44+/+ OT-I CD8 T cells were adoptively transferred into mice challenged with Listeria-OVA, there was a slight increase in the percentage of CD44+/+ cells at the effector site. However, CD44+/+ cells were out-competed by CD44-/- cells after the contraction phase in the lymphoid tissues, and the CD44-/- cells preferentially formed more memory cells. The hyaluronan-binding CD44+/+ CD8 effector T cells showed increased pAkt expression, higher glucose uptake, and were more susceptible to cell death during the contraction phase compared to non-binding CD44+/+ and CD44-/- OT-I CD8 T cells, suggesting that CD44 and its engagement with hyaluronan skews CD8 T cells toward a terminal effector differentiation state that reduces their ability to form memory cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Memória Imunológica/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/imunologia , Receptores de Hialuronatos/genética , Listeria monocytogenes/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia
16.
Mol Cancer Res ; 16(1): 16-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993511

RESUMO

Cell-cycle progression and the acquisition of a migratory phenotype are hallmarks of human carcinoma cells that are perceived as independent processes but may be interconnected by molecular pathways that control microtubule nucleation at centrosomes. Here, cell-cycle progression dramatically impacts the engraftment kinetics of 4T1-luciferase2 breast cancer cells in immunocompetent BALB/c or immunocompromised NOD-SCID gamma (NSG) mice. Multiparameter imaging of wound closure assays was used to track cell-cycle progression, cell migration, and associated phenotypes in epithelial cells or carcinoma cells expressing a fluorescence ubiquitin cell-cycle indicator. Cell migration occurred with an elevated velocity and directionality during the S-G2-phase of the cell cycle, and cells in this phase possess front-polarized centrosomes with augmented microtubule nucleation capacity. Inhibition of Aurora kinase-A (AURKA/Aurora-A) dampens these phenotypes without altering cell-cycle progression. During G2-phase, the level of phosphorylated Aurora-A at centrosomes is reduced in hyaluronan-mediated motility receptor (HMMR)-silenced cells as is the nuclear transport of TPX2, an Aurora-A-activating protein. TPX2 nuclear transport depends upon HMMR-T703, which releases TPX2 from a complex with importin-α (KPNA2) at the nuclear envelope. Finally, the abundance of phosphorylated HMMR-T703, a substrate for Aurora-A, predicts breast cancer-specific survival and relapse-free survival in patients with estrogen receptor (ER)-negative (n = 941), triple-negative (TNBC) phenotype (n = 538), or basal-like subtype (n = 293) breast cancers, but not in those patients with ER-positive breast cancer (n = 2,218). Together, these data demonstrate an Aurora-A/TPX2/HMMR molecular axis that intersects cell-cycle progression and cell migration.Implications: Tumor cell engraftment, migration, and cell-cycle progression share common regulation of the microtubule cytoskeleton through the Aurora-A/TPX2/HMMR axis, which has the potential to influence the survival of patients with ER-negative breast tumors. Mol Cancer Res; 16(1); 16-31. ©2017 AACR.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/metabolismo , Animais , Aurora Quinase A/metabolismo , Feminino , Humanos , Camundongos , Transfecção
17.
JNCI Cancer Spectr ; 2(4): pky079, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30976750

RESUMO

Precision oncology trials for pediatric cancers require rapid and accurate detection of genetic alterations. Tumor variant identification should interrogate the distinctive driver genes and more frequent copy number variants and gene fusions that are characteristics of pediatric tumors. Here, we evaluate tumor variant identification using whole genome sequencing (n = 12 samples) and two amplification-based next-generation sequencing assays (n = 28 samples), including one assay designed to rapidly assess common diagnostic, prognostic, and therapeutic biomarkers found in pediatric tumors. Variant identification by the three modalities was comparable when filtered for 151 pediatric driver genes. Across the 28 samples, the pediatric cancer-focused assay detected more tumor variants per sample (two-sided, P < .05), which improved the identification of potentially druggable events and matched pathway inhibitors. Overall, our data indicate that an assay designed to evaluate pediatric cancer-specific variants, including gene fusions, may improve the detection of target-agent pairs for precision oncology.

18.
Elife ; 62017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994651

RESUMO

Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Células-Tronco Neurais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Animais , Encéfalo/embriologia , Dineínas/metabolismo , Camundongos Knockout , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Quinase 1 Polo-Like
19.
Oncotarget ; 8(20): 32461-32475, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28427147

RESUMO

BRCA1 deficiency may perturb the differentiation hierarchy present in the normal mammary gland and is associated with the genesis of breast cancers that are genomically unstable and typically display a basal-like transcriptome. Oriented cell division is a mechanism known to regulate cell fates and to restrict tumor formation. We now show that the cell division axis is altered following shRNA-mediated BRCA1 depletion in immortalized but non-tumorigenic, or freshly isolated normal human mammary cells with graded consequences in progeny cells that include aneuploidy, perturbation of cell polarity in spheroid cultures, and a selective loss of cells with luminal features. BRCA1 depletion stabilizes HMMR abundance and disrupts cortical asymmetry of NUMA-dynein complexes in dividing cells such that polarity cues provided by cell-matrix adhesions were not able to orient division. We also show that immortalized mammary cells carrying a mutant BRCA1 allele (BRCA1 185delAG/+) reproduce many of these effects but in this model, oriented divisions were maintained through cues provided by CDH1+ cell-cell junctions. These findings reveal a previously unknown effect of BRCA1 suppression on mechanisms that regulate the cell division axis in proliferating, non-transformed human mammary epithelial cells and consequent downstream effects on the mitotic integrity and phenotype control of their progeny.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Proteína BRCA1/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Epiteliais/patologia , Feminino , Células HeLa , Humanos , Fenótipo , Ploidias
20.
Semin Cancer Biol ; 35 Suppl: S5-S24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25869442

RESUMO

Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.


Assuntos
Instabilidade Genômica/efeitos dos fármacos , Neoplasias/dietoterapia , Neoplasias/genética , Centrossomo/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Dieta , Instabilidade Genômica/genética , Humanos , Neoplasias/patologia , Prognóstico , Telomerase/antagonistas & inibidores , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...