Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(41): 8390-8397, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966071

RESUMO

The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB-Pd/C) in the form of pellets was investigated by isothermal-isobaric experiments at 1333 Pa of H2 and in the temperature range of 291-315 K. The extracted kinetics were then used in conjunction with a complementary constant rate of H2 input experimentation to model the performance of a DPB-catalysis/support system as a function of temperature and H2 partial pressure. First-principles density functional theory (DFT) calculations were also performed to shed light on the molecular level energetics of DPB and its intermediate states. A seemingly puzzling formation of alternate positive activation energy barrier (higher reaction rate with higher temperature) and negative activation energy barrier (higher reaction rate with lower temperature) zones during the hydrogenation process was discovered. However, this observed phenomenon can be logically explained in terms of the associated phase changes and H2 transport in the material. This work provides a good illustration of a rarely encountered chemical process with a negative activation energy barrier.

2.
ACS Appl Mater Interfaces ; 12(3): 3993-4001, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31880909

RESUMO

The hydrogen uptake kinetics of 1,4-bis(phenylethynyl)benzene, or DEB, mixed with palladium (Pd) on activated carbon in a rubber matrix coating on top of a porous silicone foam substrate are investigated. First, isothermal isobaric hydrogenation experiments were performed under different temperatures and H2 pressures to extract the uptake kinetics. The H2 uptake models based on the measured kinetic parameters were then employed to investigate/simulate the performance of the getter under dynamic application environments. The actual hydrogenation characteristics in this type of getter are multifaceted and involve actual H2 concentration in the getter matrix, micrometer-scale diffusion of atomic hydrogen away from Pd sites, precipitation of hydrogenated DEB crystals at the coating surfaces, and mobility of fresh DEB molecules. The kinetic analysis/modeling methodology described in this report can serve as a template for other gas-solid reactions as well. Besides possessing a good hydrogen capacity and excellent performance, this type of rubberized getter also offers some unique advantages over traditional solid getter: flexible structure and protection of the Pd catalyst from exposure to the environment.

3.
J Chem Phys ; 147(19): 194701, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166097

RESUMO

Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performed to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. Such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.

4.
J Chromatogr A ; 1401: 1-8, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26008594

RESUMO

We have developed a solid phase microextraction (SPME) sampling method using fused silica lined bottles (400 ml) to collect, store, and stabilize a headspace subsample from the source for subsequent offline, repetitive analyses of the gas using fiber-based SPME. The method enables long-term stability for repeated offline analysis of the organic species collected from the source headspace and retains all the advantages of fiber SPME sampling (e.g. rapid extraction, solvent free, simple and inexpensive) while providing additional advantages. Typically, the analytes collected on the SPME fiber must be desorbed and analyzed immediately to mitigate analyte loss or contamination. The new SPME sampling method, conducted offline using carboxen/polydimethylsiloxane (carboxen/PDMS - 85 µm) coated fibers, has been shown to be identical to in situ SPME sampling of a headspace acquired from an 80 component organic matrix with reproducibility demonstrated to be less than %RSD=7.0% for replicate samples measured over a 30-day period. In addition, repetitive samplings from one headspace aliquot are possible using one or more fibers and fiber types as well as quantitative options such as internal standard addition as demonstrated in a feasibility study using a benzene/toluene/xylene (BTX; 1 ppmv) certified gas standard, in which the SPME measurement precision (%RSD) was improved by a factor of 1.5-1.9 compared to the use of an external standard.


Assuntos
Técnicas de Química Analítica/métodos , Gases/química , Dióxido de Silício/química , Microextração em Fase Sólida/instrumentação , Benzeno/análise , Técnicas de Química Analítica/instrumentação , Reprodutibilidade dos Testes , Tolueno/análise , Xilenos/análise
5.
Chemphyschem ; 15(9): 1809-20, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24819028

RESUMO

Water-vapor-uptake experiments were performed on a silica-filled poly(dimethylsiloxane) (PDMS) network and modeled by using two different approaches. The data was modeled by using established methods and the model parameters were used to predict moisture uptake in a sample. The predictions are reasonably good, but not outstanding; many of the shortcomings of the modeling are discussed. A high-fidelity modeling approach is derived and used to improve the modeling of moisture uptake and diffusion. Our modeling approach captures the physics and kinetics of diffusion and adsorption/desorption, simultaneously. It predicts uptake better than the established method; more importantly, it is also able to predict outgassing. The material used for these studies is a filled-PDMS network; physical interpretations concerning the sorption and diffusion of moisture in this network are discussed.

6.
J Phys Chem B ; 116(48): 14183-90, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23153278

RESUMO

The dynamic and equilibrium water vapor sorption properties of Sylgard-184, a commercially available poly(dimethylsiloxane) elastomer (PDMS), were determined via gravimetric analysis from 30 to 70 °C. Described here is a methodology for quantitatively assessing how water vapor diffuses and ad/absorbs into polymeric materials that are traditionally considered hydrophobic. PDMS materials are frequently chosen for their moisture barrier properties; our results, however, demonstrate that moisture is able to penetrate the material over a range of temperatures and humidities. The sorption values measured here ranged from ca. 0.1 to 1.4 cm(3) (STP) H(2)O/g Sylgard. The isotherms exhibited sigmoidal character and were fit to a triple mode sorption model. Asymptotic behavior at low water activities was characterized using a Langmuir type adsorption model, linear behavior was fit to a Henry's law type dependence, and the convex portion at higher activities was fit with good agreement to Park's equation for pooling or clustering. The thermal dependence of these sorption modes was also explored and reported. The dynamics of the sorption process were fit to a Fickian model and effective diffusivities are reported along with corresponding activation energies. The diffusivity values measured here ranged from ca. 0.5 to 3.5 × 10(-5) cm(2)/s depending on the temperature and relative humidity. The concentration dependence of the diffusivity showed a direct correlation with the three modes of uptake obtained from the isotherms. Corrections to the diffusivities were calculated using existing models that take into account adsorption and pooling.

7.
Environ Sci Technol ; 46(5): 2806-12, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22316095

RESUMO

Environmental and geochemical systems containing paramagnetic species could benefit by using nuclear magnetic resonance (NMR) spectroscopy due to the sensitivity of the spectral response to small amounts paramagnetic interactions. In this study, we apply commonly used solid-state NMR spectroscopic methods combined with chemometrics analysis to probe sorption behavior of the paramagnetic cations Cu(2+) and Ni(2+)at the amorphous silica surface. We exploit the unique properties of paramagnets to derive meaningful structural information in these systems at low, environmentally relevant cation surface loadings by comparing the NMR response of sorption samples to paramagnetic free samples. These data suggest that a simple sorption model where the cation sorbs as inner sphere complexes at negatively charged, deprotonated silanol sites is appropriate. These results help constrain sorption models that are used to describe metal fate and transport.


Assuntos
Cátions Bivalentes/química , Espectroscopia de Ressonância Magnética/métodos , Metais/química , Elementos de Transição/química , Adsorção , Concentração de Íons de Hidrogênio , Ligantes , Modelos Químicos , Soluções , Propriedades de Superfície , Fatores de Tempo
8.
J Phys Chem B ; 114(30): 9729-36, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20617846

RESUMO

Radiation-induced degradation of polymeric materials occurs through numerous, simultaneous, competing chemical reactions. Although degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit nonlinear dose dependence due to dose-dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used in electronic encapsulation and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry (GC/MS). The mechanical data and (1)H spin-echo NMR spectra indicated that radiation exposure leads to predominantly cross-linking over the cumulative dose range studied (0-250 kGy) with a rate roughly linear with dose. (1)H multiple-quantum NMR spectroscopy detected a bimodal distribution in the network structure, as expected from the proposed structure of Sylgard 184. The MQ NMR spectra further indicated that the radiation-induced structural changes were not linear in adsorbed dose and that competing chain scission mechanisms made a greater contribution to the overall degradation process in the range of 50-100 kGy (although cross-linking still dominated). The SPME-GC/MS data were analyzed using principal component analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose.

9.
J Magn Reson ; 200(1): 56-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581116

RESUMO

Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Algoritmos , Simulação por Computador , Cobre , Campos Eletromagnéticos , Desenho de Equipamento , Lasers , Modelos Estatísticos , Nanotecnologia
10.
Geochem Trans ; 10: 1, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19144195

RESUMO

Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (+/- 0.1) x 10(-5) s(-1) for a solution:solid of 10:1 and 1.6 (+/- 0.8) x 10(-4) s(-1) for a solution:solid of 5:1 (batch mode; T = 150 degrees C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at delta iso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (+/- 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR.

11.
J Phys Chem B ; 111(45): 12977-84, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17958412

RESUMO

Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.

12.
Anal Chem ; 79(21): 8037-45, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17915964

RESUMO

Bacteria often reside in communities where the cells have secreted sticky, polymeric compounds that allow them to attach to surfaces. This sessile lifestyle, referred to as a biofilm, affords the cells within these communities a tolerance of antibiotics and antimicrobial treatments. Biofilms of the bacterium Pseudomonas aeruginosa have been implicated in cystic fibrosis and are capable of colonizing medical implant devices, such as heart valves and catheters, where treatment of the infection often requires the removal of the infected device. This mode of growth is in stark contrast to planktonic, free floating cells, which are more easily eradicated with antibiotics. The mechanisms contributing to a biofilm's tenacity and a planktonic cell's susceptibility are just beginning to be explored. In this study, we have used a metabolomic approach employing nuclear magnetic resonance (NMR) techniques to study the metabolic distinctions between these two modes of growth in P. aeruginosa. One-dimensional 1H NMR spectra of fresh growth medium were compared with spent medium supernatants from batch and chemostat planktonic and biofilms generated in continual flow system culture. In addition, 1H high-resolution magic angle spinning NMR techniques were employed to collect 1H NMR spectra of the corresponding cells. Principal component analysis and spectral comparisons revealed that the overall metabolism of planktonic and biofilm modes of growth appeared similar for the spent media, while the planktonic and biofilm cells displayed marked differences. To determine the robustness of this technique, we prepared cell samples under slightly different preparation methods. Both techniques showed similar results. These feasibility studies show that there exist chemical differences between planktonic and biofilm cells; however, in order to identify these metabolomic differences, more extensive studies would have to be performed, including 1H-1H total correlated spectroscopy.


Assuntos
Biofilmes/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética/métodos , Metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Estudos de Viabilidade , Espectroscopia de Ressonância Magnética/normas , Pseudomonas aeruginosa/isolamento & purificação , Padrões de Referência , Sensibilidade e Especificidade
13.
J Magn Reson ; 189(1): 121-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17897853

RESUMO

Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Algoritmos , Desenho de Equipamento , Espectroscopia de Ressonância Magnética/economia , Espectroscopia de Ressonância Magnética/métodos
14.
J Phys Chem B ; 110(8): 3588-94, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16494414

RESUMO

Molecular dynamics simulations of bulk melts of poly(dimethylsiloxane) (PDMS) are utilized to study chain conformation and ordering under constant stress uniaxial extension at room temperature. We find that large extensions induce chain ordering in the direction of applied stress. During the extension, we also find that voids are created via a cavitation mechanism. At the end of our simulations, by visual inspection, we distinguish cavity, fibril, and amorphous regions that coexist together. The surrounding material about the formed cavities is fibril-like, while the remaining material remains amorphous. We also estimate the surface energy of the cavity. The cavity size continually increases in the dimension of applied stress but saturates in the lateral dimensions, most likely due to the finite size of the system. Despite chain orientation and ordering in the direction of applied stress, crystallization is absent in the time and stress range of our simulation. This study represents a baseline for the future study of mechanical properties of PDMS melts enriched with fillers under stress.

15.
Environ Sci Technol ; 37(10): 2286-90, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12785538

RESUMO

Aqueous solutions of 100 parts per billion (ppb) uranium at pH 7 were treated with granulated activated carbon (GAC) that had been modified with various formulations of hydrophobic aerogels. The composite materials were found to be superior in removing uranium from a stock solution compared to GAC alone evaluated by a modified ASTM D 3860-98 method for batch testing. The testing results were evaluated using a Freundlich adsorption model. The best performing material has parameters of n = 287 and Kf = 1169 compared to n = 1.00, and Kf = 20 for GAC alone. The composite materials were formed by mixing (CH3O)4Si with the hydrophobic sol-gel precursor, (CH3O)3SiCH2CH2CF3 and with specified modifiers, such as H3PO4, Ca(NO3)2, and (C2H5O)3SiCH2CH2P(O)(OC2H5)2, elation catalysts, and GAC in a supercritical reactor system. After gelation, supercritical extraction, and sieving, the composites were tested. Characterization by FTIR and 31P NMR indicate the formation of phosphate in the case of the H3PO4 and Ca(NO3)2 composites and phosphonic acid related compounds in the phosphonate composite. These composite materials have potential application in the clean up of groundwater at DOE and other facilities.


Assuntos
Carvão Vegetal/química , Resíduos Radioativos/prevenção & controle , Dióxido de Silício/química , Urânio/análise , Poluentes Radioativos da Água/análise , California , Água Doce/química , Géis , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos/métodos
16.
Neurobiol Dis ; 9(2): 160-72, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11895369

RESUMO

Aberrant association of autoantibodies with myelin oligodendrocyte glycoprotein (MOG), an integral membrane protein of the central nervous system (CNS) myelin, has been implicated in the pathogenesis of multiple sclerosis (MS). Sensitization of nonhuman primates (Callithrix jacchus marmosets) against the nonglycosylated, recombinant N-terminal domain of rat MOG (residues 1-125) reproduces an MS-like disease in which MOG-specific autoantibodies directly mediate demyelination. To assess the interrelationship between MOG structure and the induction of autoimmune CNS diseases and to enable structure-based rational design of therapeutics, a homology model of human MOG(2-120) was constructed based on consensus residues found in immunoglobulin superfamily variable-type proteins having known structures. Possible sites for posttranslational modifications and dimerization have also been identified and analyzed. The B cell and T cell epitopes have been identified in rat MOG-immunized marmosets, and these sequences are observed to map primarily onto accessible regions in the model, which may explain their ability to generate potent antibody responses.


Assuntos
Callithrix/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/imunologia , Animais , Apresentação de Antígeno , Mapeamento de Epitopos , Espaço Extracelular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas da Mielina , Glicoproteína Associada a Mielina/química , Glicoproteína Mielina-Oligodendrócito , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
17.
J Am Chem Soc ; 124(8): 1704-13, 2002 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11853447

RESUMO

Sandia octahedral molecular sieves (SOMS) is an isostructural, variable composition class of ion exchangers with the general formula Na(2)Nb(2-x)M(IV)(x)O (6-x)(OH)(x).H(2)O (M(IV) = Ti, Zr; x = 0.04-0.40) where up to 20% of the framework Nb(V) can be substituted with Ti(IV) or Zr(IV). This class of molecular sieves is easily converted to perovskite through low-temperature heat treatment (500-600 degrees C). This report provides a detailed account of how the charge imbalance of this Nb(V)-M(IV) substitution is compensated. X-ray powder diffraction with Rietveld refinement, infrared spectroscopy, thermogravimetric analysis, (23)Na MAS NMR, and (1)H MAS NMR were used to determine how the framework anionic charge is cation-balanced over a range of framework compositions. All spectroscopic evidence indicated a proton addition for each M(IV) substitution. Evidences for variable proton content included (1) increasing OH observed by (1)H MAS NMR with increasing M(IV) substitution, (2) increased infrared band broadening indicating increased H-bonding with increasing M(IV) substitution, (3) increased TGA weight loss (due to increased OH content) with increasing M(IV) substitution, (4) no variance in population on the sodium sites (indicated by Rietveld refinement) with variable composition, and (5) no change in the (23)Na MAS NMR spectra with variable composition. Also observed by infrared spectroscopy and (23)Na MAS NMR was increased disorder on the Nb(V)/M(IV) framework sites with increasing M(IV) substitution, evidenced by broadening of these spectral features. These spectroscopic studies, along with ion exchange experiments, also revealed the effect of the Nb(V)/M(IV) framework substitution on materials properties. Namely, the temperature of conversion to NaNb(1-x)M(IV)(x)O(3) (M = Ti, Zr) perovskite increased with increasing Ti in the framework and decreased with increasing Zr in the framework. This suggested that Ti stabilizes the SOMS framework and Zr destabilizes the SOMS framework. Finally, comparing ion exchange properties of a SOMS material with minimal (2%) Ti to a SOMS material with maximum (20%) Ti revealed the divalent cation selectivity of these materials which was reported previously is a function of the M(IV) substitution in the framework. A thorough investigation of this class of SOMS materials has revealed the importance of understanding the influence of heterovalent substitutions in microporous frameworks on material properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...