Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 662, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436864

RESUMO

The drying power of air, or vapour pressure deficit (VPD), is an important measurement of potential plant stress and productivity. Estimates of VPD values of the past are integral for understanding the link between rising modern atmospheric carbon dioxide (pCO2) and global water balance. A geological record of VPD is needed for paleoclimate studies of past greenhouse spikes which attempt to constrain future climate, but at present there are few quantitative atmospheric moisture proxies that can be applied to fossil material. Here we show that VPD leaves a permanent record in the slope (S) of least-squares regressions between stable isotope ratios of carbon and oxygen (13C and 18O) found in cellulose and pedogenic carbonate. Using previously published data collected across four continents we show that S can be used to reconstruct VPD within and across biomes. As one application, we used S to estimate VPD of 0.46 kPa ± 0.26 kPa for cellulose preserved tens of millions of years ago-in the Eocene (45 Ma) Metasequoia from Axel Heiberg Island, Canada-and 0.82 kPa ± 0.52 kPa-in the Oligocene (26 Ma) for pedogenic carbonate from Oregon, USA-both of which are consistent with existing records at those locations. Finally, we discuss mechanisms that contribute to the positive correlation observed between VPD and S, which could help reconstruct past climatic conditions and constrain future alterations of global carbon and water cycles resulting from modern climate change.

2.
Trends Plant Sci ; 25(7): 652-660, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32526170

RESUMO

With increasing calls for improving terrestrial carbon sequestration and sustainable water use, scientists are faced with the challenge of predicting changes in carbon-water relations from organisms to landscapes. We propose an integrative framework to help in answering basic and applied questions pertaining to coupled carbon-water functions in a variety of ecosystems. The conceptual framework is based on data from a globally representative set of ecosystems that hold vast amounts of carbon and provide water for rural and urban land uses. We focus on examples that demonstrate the value of an integrated approach that combines fast- and slow-changing state factors (i.e., variables that define structural properties and functional processes at the soil-plant-atmosphere interface) to improve predictions of carbon-water relations across scales.


Assuntos
Carbono , Ecossistema , Atmosfera , Solo , Água
3.
Proc Natl Acad Sci U S A ; 115(18): E4219-E4226, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666233

RESUMO

This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region.


Assuntos
Carbono/metabolismo , Florestas , Modelos Biológicos , Solo , Árvores/crescimento & desenvolvimento , Água/metabolismo , California
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...