Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Biomed Mater ; 13(3): 034101, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29068322

RESUMO

In this study, GFP+ skin-derived precursor Schwann cells (SKP-SCs) from adult rats were grafted into the injured spinal cord of immunosuppressed rats. Our goal was to improve grafted cell survival in the injured spinal cord, which is typically low. Cells were grafted in hyaluronan-methylcellulose hydrogel (HAMC) or hyaluronan-methylcellulose modified with laminin- and fibronectin-derived peptide sequences (eHAMC). The criteria for selection of hyaluronan was for its shear-thinning properties, making the hydrogel easy to inject, methylcellulose for its inverse thermal gelation, helping to keep grafted cells in situ, and fibronectin and laminin to improve cell attachment and, thus, prevent cell death due to dissociation from substrate molecules (i.e., anoikis). Post-mortem examination revealed large masses of GFP+ SKP-SCs in the spinal cords of rats that received cells in HAMC (5 out of n = 8) and eHAMC (6 out of n = 8). Cell transplantation in eHAMC caused significantly greater spinal lesions compared to lesion and eHAMC only control groups. A parallel study showed similar masses in the contused spinal cord of rats after transplantation of adult GFP+ SKP-SCs without a hydrogel or immunosuppression. These findings suggest that adult GFP+ SKP-SCs, cultured/transplanted under the conditions described here, have a capacity for uncontrolled proliferation. Growth-formation in pre-clinical research has also been documented after transplantation of: human induced pluripotent stem cell-derived neural stem cells (Itakura et al 2015 PLoS One 10 e0116413), embryonic stem cells and embryonic stem cell-derived neurons (Brederlau et al 2006 Stem Cells 24 1433-40; Dressel et al 2008 PLoS One 3 e2622), bone marrow derived mesenchymal stem cells (Jeong et al 2011 Circ. Res. 108 1340-47) and rat nerve-derived SCs following in vitro expansion for >11 passages (Funk et al 2007 Eur. J. Cell Biol. 86 207-19; Langford et al 1988 J. Neurocytology 17 521-9; Morrissey et al 1991 J. Neurosci. 11 2433-42). It is of upmost importance to define the precise culture/transplantation parameters for maintenance of normal cell function and safe and effective use of cell therapy.


Assuntos
Células de Schwann/transplante , Pele/citologia , Traumatismos da Medula Espinal/cirurgia , Animais , Axônios/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Ácido Hialurônico/química , Hidrogéis/química , Masculino , Mycoplasma , Regeneração Nervosa , Células-Tronco Neurais/citologia , Ratos , Ratos Endogâmicos F344 , Resistência ao Cisalhamento
4.
Neural Plast ; 2017: 1932875, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29138697

RESUMO

The reticulospinal tract (RtST) descends from the reticular formation and terminates in the spinal cord. The RtST drives the initiation of locomotion and postural control. RtST axons form new contacts with propriospinal interneurons (PrINs) after incomplete spinal cord injury (SCI); however, it is unclear if injured or uninjured axons make these connections. We completely transected all traced RtST axons in rats using a staggered model, where a hemisection SCI at vertebra T10 is followed by a contralateral hemisection at vertebra T7. In one group of the animals, the T7 SCI was performed 2 weeks after the T10 SCI (delayed; dSTAG), and in another group, the T10 and T7 SCIs were concomitant (cSTAG). dSTAG animals had significantly more RtST-PrIN contacts in the grey matter compared to cSTAG animals (p < 0.05). These results were accompanied by enhanced locomotor recovery with dSTAG animals significantly outperforming cSTAG animals (BBB test; p < 0.05). This difference suggests that activity in neuronal networks below the first SCI may contribute to enhanced recovery, because dSTAG rats recovered locomotor ability before the second hemisection. In conclusion, our findings support the hypothesis that the injured RtST forms new connections and is a key player in the recovery of locomotion post-SCI.


Assuntos
Axônios/patologia , Interneurônios/patologia , Locomoção , Regeneração Nervosa , Traumatismos da Medula Espinal/fisiopatologia , Animais , Feminino , Técnicas de Rastreamento Neuroanatômico , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas
5.
Neurosci Lett ; 658: 67-72, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28843345

RESUMO

A major goal of Schwann cell (SC) transplantation for spinal cord injury (SCI) is to fill the injury site to create a bridge for regenerating axons. However, transplantation of peripheral nerve SCs requires an invasive biopsy, which may result in nerve damage and donor site morbidity. SCs derived from multipotent stem cells found in skin dermis (SKP-SCs) are a promising alternative. Regardless of source, loss of grafted SCs post-grafting is an issue in studies of regeneration, with survival rates ranging from ∼1 to 20% after ≥6 weeks in rodent models of SCI. Immune rejection has been implicated in these low survival rates. Therefore, our aim was to explore the role of the immune response on grafted SKP-SC survival in Fischer rats with a spinal hemisection injury. We compared SKP-SC survival 6 weeks post-transplantation in: (I) cyclosporine-immunosuppressed rats (n=8), (II) immunocompetent rats (n=9), and (III) rats of a different sub-strain than the SKP-SC donor rats (n=7). SKP-SC survival was similar in all groups, suggesting immune rejection was not a main factor in SKP-SC loss observed in this study. SKP-SCs were consistently found on laminin expressed at the injury site, indicating detachment-mediated apoptosis (i.e., anoikis) might play a major role in grafted cell loss.


Assuntos
Ciclosporina/farmacocinética , Regeneração Nervosa/fisiologia , Células de Schwann/citologia , Traumatismos da Medula Espinal/terapia , Animais , Ciclosporina/farmacologia , Modelos Animais de Doenças , Feminino , Nervos Periféricos/citologia , Ratos Endogâmicos F344 , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia
6.
Anim Cogn ; 19(6): 1071-1079, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27421709

RESUMO

Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.


Assuntos
Memória , Peixe-Zebra , Animais , Rememoração Mental
7.
Behav Brain Res ; 296: 199-210, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376244

RESUMO

The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour.


Assuntos
Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Peixe-Zebra/fisiologia , Animais , Feminino , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Reconhecimento Visual de Modelos/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
8.
Sci Rep ; 5: 12615, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223940

RESUMO

We recently showed that spinal cord injury (SCI) leads to a decrease in mRNA editing of serotonin receptor 2C (5-HT2CR) contributing to post-SCI spasticity. Here we study post-SCI mRNA editing and global gene expression using massively parallel sequencing. Evidence is presented that the decrease in 5-HT2CR editing is caused by down-regulation of adenosine deaminase ADAR2 and that editing of at least one other ADAR2 target, potassium channel Kv1.1, is decreased after SCI. Bayesian network analysis of genome-wide transcriptome data indicates that down-regulation of ADAR2 (1) is triggered by persistent inflammatory response to SCI that is associated with activation of microglia and (2) results in changes in neuronal gene expression that are likely to contribute both to post-SCI restoration of neuronal excitability and muscle spasms. These findings have broad implications for other diseases of the Central Nervous System and could open new avenues for developing efficacious antispastic treatments.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA/fisiologia , RNA Mensageiro/metabolismo , Adenosina Desaminase/genética , Animais , Teorema de Bayes , Regulação para Baixo , Feminino , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Microglia/metabolismo , RNA Mensageiro/química , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Análise de Sequência de RNA , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
9.
Behav Brain Res ; 291: 26-35, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25975172

RESUMO

A rarely explored subject in animal research is the effect of pre-injury variables on behavioral outcome post-SCI. Low reporting of such variables may underlie some discrepancies in findings between laboratories. Particularly, intensive task-specific training before a SCI might be important, considering that sports injuries are one of the leading causes of SCI. Thus, individuals with SCI often underwent rigorous training before their injuries. In the present study, we asked whether training before SCI on a grasping task or a swimming task would influence motor recovery in rats. Swim pre-training impaired recovery of swimming 2 and 4 weeks post-injury. This result fits with the idea of motor learning interference, which posits that learning something new may disrupt learning of a new task; in this case, learning strategies to compensate for functional loss after SCI. In contrast to swimming, grasp pre-training did not influence grasping ability after SCI at any time point. However, grasp pre-trained rats attempted to grasp more times than untrained rats in the first 4 weeks post-injury. Also, lesion volume of grasp pre-trained rats was greater than that of untrained rats, a finding which may be related to stress or activity. The increased participation in rehabilitative training of the pre-trained rats in the early weeks post-injury may have potentiated spontaneous plasticity in the spinal cord and counteracted the deleterious effect of interference and bigger lesions. Thus, our findings suggest that pre-training plays a significant role in recovery after CNS damage and needs to be carefully controlled for.


Assuntos
Atividade Motora/fisiologia , Condicionamento Físico Animal , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Animais , Modelos Animais de Doenças , Feminino , Condicionamento Físico Animal/métodos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Natação
10.
Behav Brain Res ; 281: 137-48, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25523027

RESUMO

The single pellet grasping (SPG) task is a skilled forelimb motor task commonly used to evaluate reaching and grasp kinematics and recovery of forelimb function in rodent models of CNS injuries and diseases. To train rats in the SPG task, the animals are usually food restricted then placed in an SPG task enclosure and presented food pellets on a platform located beyond a slit located at the front of the task enclosure for 10-30 min, normally every weekday for several weeks. When the SPG task is applied in studies involving various experimental groups, training quickly becomes labor intensive, and can yield results with significant day-to-day variability. Furthermore, training is frequently done during the animals' light-cycle, which for nocturnal rodents such as mice and rats could affect performance. Here we describe an automated pellet presentation (APP) robotic system to train and test rats in the SPG task that reduces some of the procedural weaknesses of manual training. We found that APP trained rats performed significantly more trials per 24 h period, and had higher success rates with less daily and weekly variability than manually trained rats. Moreover, the results show that success rates are positively correlated with the number of dark-cycle trials, suggesting that dark-cycle training has a positive effect on success rates. These results demonstrate that automated training is an effective method for evaluating and training skilled reaching performance of rats, opening up the possibility for new approaches to investigating the role of motor systems in enabling skilled forelimb use and new approaches to investigating rehabilitation following CNS injury.


Assuntos
Alimentos , Membro Anterior/fisiologia , Força da Mão/fisiologia , Destreza Motora/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Testes Neuropsicológicos , Ratos , Ratos Endogâmicos Lew , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...