Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(38): 18300-18305, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30246857

RESUMO

Adsorption on porous solids depends on the morphology of the pores, the cylindrical one being the most studied in the literature. In this work, we present the first experimental investigation of adsorption and evaporation on conical nanopores produced by anodization of aluminium oxide. The pores are about 50 µm long, with the wide ends having a diameter of ∼79 nm and the narrow ones of ∼30 nm. Three different pores configurations are considered: open at both ends, open only at the narrow end and open only at the wide end. Despite the very small value of the conical angle α, estimated to be ∼0.06°, just barely above α = 0° corresponding to a cylindrical pore, the adsorption isotherms look strikingly different from those measured on cylindrical pores of similar size. First of all, the hysteresis loops of the conical pores with two open ends and with open wide ends practically coincide. Furthermore, they are narrower and the adsorption and evaporation branches are broader than those of the cylindrical pores with similar size. Finally, conical pores with open narrow ends exhibit a large hysteresis indicative of pore blocking. To unravel the mechanisms underlying adsorption and evaporation in such conical pores, we also report complementary results obtained using on-lattice grand canonical Monte Carlo simulations.

2.
Nat Commun ; 9(1): 835, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483582

RESUMO

Exposed to ionizing radiation, nanomaterials often undergo unusual transformations compared to their bulk form. However, atomic-level mechanisms of such transformations are largely unknown. This work visualizes and quantifies nanopore shrinkage in nanoporous alumina subjected to low-energy ion beams in a helium ion microscope. Mass transport in porous alumina is thus simultaneously induced and imaged with nanoscale precision, thereby relating nanoscale interactions to mesoscopic deformations. The interplay between chemical bonds, disorders, and ionization-induced transformations is analyzed. It is found that irradiation-induced diffusion is responsible for mass transport and that the ionization affects mobility of diffusive entities. The extraordinary room temperature superplasticity of the normally brittle alumina is discovered. These findings enable the effective manipulation of chemical bonds and structural order by nanoscale ion-matter interactions to produce mesoscopic structures with nanometer precision, such as ultra-high density arrays of sub-10-nm pores with or without the accompanying controlled plastic deformations.

3.
Langmuir ; 31(17): 4895-905, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25871845

RESUMO

We have carried out systematic experiments and numerical simulations of the adsorption on porous anodic aluminum oxide (AAO) duplex layers presenting either an ordered or a disordered interconnecting interface between the large (cavity) and small (constriction) sections of the structured pores. Selective blocking of the pore openings resulted in three different pore topologies: open structured pores, funnel pores, and ink-bottle pores. In the case of the structured pores having an ordered interface, the adsorption isotherms present a rich phenomenology characterized by the presence of two steps in the condensation branch and the opening of one (two) hysteresis loops during evaporation for the ink-bottle (open and funnel) pores. The isotherms can be obtained by summing the isotherms measured on uniform pores having the dimensions of the constrictions or of the cavities. The numerical analysis of the three different pore topologies indicates that the shape of the junction between the two pore sections is only important for the adsorption branch. In particular, a conic junction which resembles that of the AAO pores represents the experimental isotherms for the open and funnel pores better, but the shape of the junction in the ink bottle pores does not matter. The isotherms for the duplex layers with a disordered interface display the same general features found for the ordered duplex layers. In both cases, the adsorption branches coincide and have two steps which are shifted to lower relative pressures compared to those for the ordered duplex. Furthermore, the desorption branches comprise hysteresis loops much wider than those of the ordered duplex layers. Overall, this study highlights the important role played by morphologies where there are interconnections between large and small pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...