Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 181(1): 85-96, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308150

RESUMO

The plant-specific translation initiation complex eIFiso4F is encoded by three genes in Arabidopsis (Arabidopsis thaliana)-genes encoding the cap binding protein eIFiso4E (eifiso4e) and two isoforms of the large subunit scaffolding protein eIFiso4G (i4g1 and i4g2). To quantitate phenotypic changes, a phenomics platform was used to grow wild-type and mutant plants (i4g1, i4g2, i4e, i4g1 x i4g2, and i4g1 x i4g2 x i4e [i4f]) under various light conditions. Mutants lacking both eIFiso4G isoforms showed the most obvious phenotypic differences from the wild type. Two-dimensional differential gel electrophoresis and mass spectrometry were used to identify changes in protein levels in plants lacking eIFiso4G. Four of the proteins identified as measurably decreased and validated by immunoblot analysis were two light harvesting complex binding proteins 1 and 3, Rubisco activase, and carbonic anhydrase. The observed decreased levels for these proteins were not the direct result of decreased transcription or protein instability. Chlorophyll fluorescence induction experiments indicated altered quinone reduction kinetics for the double and triple mutant plants with significant differences observed for absorbance, trapping, and electron transport. Transmission electron microscopy analysis of the chloroplasts in mutant plants showed impaired grana stacking and increased accumulation of starch granules consistent with some chloroplast proteins being decreased. Rescue of the i4g1 x i4g2 plant growth phenotype and increased expression of the validated proteins to wild-type levels was obtained by overexpression of eIFiso4G1. These data suggest a direct and specialized role for eIFiso4G in the synthesis of a subset of plant proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Fator de Iniciação Eucariótico 4G/genética , Mutação , Isoformas de Proteínas
2.
PLoS One ; 12(1): e0169602, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28046134

RESUMO

We recently identified a remarkably strong (739 nt-long) IRES-like element in the 5' untranslated region (UTR) of Triticum mosaic virus (TriMV, Potyviridae). Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral translation element has a ten-fold greater affinity for the large subunit eIF4G/eIFiso4G than to the cap binding protein eIF4E/eIFiso4E. This data supports a translation mechanism that is largely dependent on eIF4G and its isoform. The binding of both scaffold isoforms requires an eight base-pair-long hairpin structure located 270 nucleotides upstream of the translation initiation site, which we have previously shown to be crucial for IRES activity. Despite a weak binding affinity to the mRNA, eIFiso4G alone or in combination with eIFiso4E supports TriMV translation in a cap-binding factor-depleted wheat germ extract. Notably, TriMV 5' UTR-mediated translation is dependent upon eIF4A helicase activity, as the addition of the eIF4A inhibitor hippuristanol inhibits 5' UTR-mediated translation. This inhibition is reversible with the addition of recombinant wheat eIF4A. These results and previous observations demonstrate a key role of eIF4G and eIF4A in this unique mechanism of cap-independent-translation. This work provides new insights into the lesser studied translation mechanisms of plant virus-mediated internal translation initiation.


Assuntos
Fator de Iniciação Eucariótico 4G/química , Potyviridae/genética , Triticum/virologia , Regiões 5' não Traduzidas , Humanos , Interferometria , Vírus do Mosaico/genética , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas/química , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas Recombinantes/química , Ribossomos/química , Esteróis/química , Globinas beta/química
3.
Plant Physiol ; 172(1): 128-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27388680

RESUMO

Eukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5'-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F. CDKA phosphorylates eIF4A on a conserved threonine residue (threonine-164) within the RNA-binding motif 1b TPGR. In vivo, a phospho-null (APGR) variant of the Arabidopsis (Arabidopsis thaliana) eIF4A1 protein retains the ability to functionally complement a mutant (eif4a1) plant line lacking eIF4A1, whereas a phosphomimetic (EPGR) variant fails to complement. The phospho-null variant (APGR) rescues the slow growth rate of roots and rosettes, together with the ovule-abortion and late-flowering phenotypes. In vitro, wild-type recombinant eIF4A1 and its phospho-null variant both support translation in cell-free wheat germ extracts dependent upon eIF4A, but the phosphomimetic variant does not support translation and also was deficient in ATP hydrolysis and helicase activity. These observations suggest a mechanism whereby CDK phosphorylation has the potential to down-regulate eIF4A activity and thereby affect translation.


Assuntos
Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Fator de Iniciação 4A em Eucariotos/genética , RNA Helicases/genética , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Quinases Ciclina-Dependentes/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Helicases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Treonina/genética , Treonina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Translation (Austin) ; 4(2): e1257408, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28090423

RESUMO

The use of fluorescent proteins fused to other proteins has been very useful in revealing the location and function of many proteins. However, it is very important to show that the fusion of these reporter proteins does not impact the function of the protein of interest. Plants have 2 forms of the cap-binding protein that function in initiation of translation, eIF4E and a plant specific form, eIFiso4E. In an attempt to determine the cellular localization of eIFiso4E, fusions to GFP were made, but were found to not be competent to rescue the lethal phenotype of plants lacking eIF4E and eIFiso4E. This suggested that the GFP fusions at either the N- or C-terminus of eIFiso4E were not functional. Biochemical analysis of the fusions revealed that eIFiso4E•GFP fusions were not able to bind to m7GTP Sepharose indicating that they were not functional as cap-binding proteins. Analysis of eIF4E•GFP fusions, both in yeast and in vitro, showed that the N-terminal fusion may be functional, whereas the C-terminal fusion bound m7GTP Sepharose very poorly and functioned poorly in yeast. These results highlight the importance of verification both biochemically and in vivo that reporter fusions of proteins maintain activity and are stable in order to prevent observations that may result in artifacts.

5.
J Virol ; 89(24): 12427-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423954

RESUMO

UNLABELLED: Several plant viruses encode elements at the 5' end of their RNAs, which, unlike most cellular mRNAs, can initiate translation in the absence of a 5' m7GpppG cap. Here, we describe an exceptionally long (739-nucleotide [nt]) leader sequence in triticum mosaic virus (TriMV), a recently emerged wheat pathogen that belongs to the Potyviridae family of positive-strand RNA viruses. We demonstrate that the TriMV 5' leader drives strong cap-independent translation in both wheat germ extract and oat protoplasts through a novel, noncanonical translation mechanism. Translation preferentially initiates at the 13th start codon within the leader sequence independently of eIF4E but involves eIF4G. We truncated the 5' leader to a 300-nucleotide sequence that drives cap-independent translation from the 5' end. We show that within this sequence, translation activity relies on a stem-loop structure identified at nucleotide positions 469 to 490. The disruption of the stem significantly impairs the function of the 5' untranslated region (UTR) in driving translation and competing against a capped RNA. Additionally, the TriMV 5' UTR can direct translation from an internal position of a bicistronic mRNA, and unlike cap-driven translation, it is unimpaired when the 5' end is blocked by a strong hairpin in a monocistronic reporter. However, the disruption of the identified stem structure eliminates such a translational advantage. Our results reveal a potent and uniquely controlled translation enhancer that may provide new insights into mechanisms of plant virus translational regulation. IMPORTANCE: Many members of the Potyviridae family rely on their 5' end for translation. Here, we show that the 739-nucleotide-long triticum mosaic virus 5' leader bears a powerful translation element with features distinct from those described for other plant viruses. Despite the presence of 12 AUG start codons within the TriMV 5' UTR, translation initiates primarily at the 13th AUG codon. The TriMV 5' UTR is capable of driving cap-independent translation in vitro and in vivo, is independent of eIF4E, and can drive internal translation initiation. A hairpin structure at nucleotide positions 469 to 490 is required for the cap-independent translation and internal translation initiation abilities of the element and plays a role in the ability of the TriMV UTR to compete against a capped RNA in vitro. Our results reveal a novel translation enhancer that may provide new insights into the large diversity of plant virus translation mechanisms.


Assuntos
Regiões 5' não Traduzidas/fisiologia , Códon de Iniciação/metabolismo , Potyviridae/metabolismo , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas Virais/biossíntese , Códon de Iniciação/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Conformação de Ácido Nucleico , Potyviridae/genética , RNA Viral/genética , Proteínas Virais/genética
6.
Plant Physiol ; 164(4): 1820-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501003

RESUMO

Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in vitro at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequência Conservada , Fator de Iniciação 4E em Eucariotos/metabolismo , Loci Gênicos , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Bioensaio , Simulação por Computador , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação Eucariótico 4G/metabolismo , Teste de Complementação Genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofertilização
7.
J Proteome Res ; 12(12): 5867-77, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24200290

RESUMO

We report the structural analysis of cap-binding proteins using a chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating solvent accessibility of proteins. Our methodology utilized a chromogenic probe (NN) to probe the exposed amine residues of wheat eukaryotic translation initiation factor 4E (eIF4E), eIF4E in complex with a fragment of eIF4G ("mini-eIF4F"), eIF4E in complex with full length eIF4G, and the plant specific cap-binding protein, eIFiso4E. Structural changes of eIF4E in the absence and presence of excess dithiothreitol and in complex with a fragment of eIF4G or full-length eIF4G are mapped. The results indicate that there are particular lysine residues whose environment changes in the presence of dithiothreitol or eIF4G, suggesting that changes in the structure of eIF4E are occurring. On the basis of the crystal structure of wheat eIF4E and a constructed homology model of the structure for eIFiso4E, the reactivities of lysines in each protein are rationalized. Our results suggest that chemical probe/UVPD mass spectrometry can successfully predict dynamic structural changes in solution that are consistent with known crystal structures. Our findings reveal that the binding of m(7)GTP to eIF4E and eIFiso4E appears to be dependent on the redox state of a pair of cysteines near the m(7)GTP binding site. In addition, tertiary structural changes of eIF4E initiated by the formation of a complex containing a fragment of eIF4G and eIF4E were observed.


Assuntos
Cisteína/química , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação Eucariótico 4G/química , Lisina/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Sítios de Ligação , Cisteína/metabolismo , Ditiotreitol/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Lisina/metabolismo , Espectrometria de Massas/métodos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Triticum/química
8.
J Virol ; 87(3): 1872-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192876

RESUMO

Certain plus-strand RNA plant viruses that are uncapped and nonpolyadenylated rely on RNA elements in their 3' untranslated region, termed 3'-cap-independent translational enhancers (3'CITEs), for efficient translation of their proteins. Here, we have investigated the properties of the Y-shaped class of 3'CITE present in the tombusvirus Carnation Italian ringspot virus (CIRV). While some types of 3'CITE have been found to function through recruitment of translation initiation factors to the viral genome, no trans-acting translation-related factors have yet been identified for the Y-shaped 3'CITE. Our results indicate that the CIRV 3'CITE complexes with eIF4F and eIFiso4F, with the former mediating translation more efficiently than the latter. In nature, some classes of 3'CITE are present in several different viral genera, suggesting that these elements hold a high degree of modularity. Here, we test this concept by engineering chimeric viruses containing heterologous 3'CITEs and show that the Y-shaped class of 3'CITE in CIRV can be replaced by two alternative types of 3'CITE, i.e., a Panicum mosaic virus-like 3'CITE or an I-shaped 3'CITE, without any major loss in in vitro translation or replication efficiency in protoplasts. The heterologous 3'CITEs also mediated whole-plant infections of Nicotiana benthamiana, where distinct symptoms were observed for each of the alternative 3'CITEs and 3'CITE evolution occurred during serial passaging. Our results supply new information on Y-shaped 3'CITE function and provide insights into 3'CITE virus-host compatibilities.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Regulação Viral da Expressão Gênica , Biossíntese de Proteínas , RNA Viral/metabolismo , Tombusvirus/fisiologia , Ligação Proteica , RNA Viral/genética , Recombinação Genética , Nicotiana/virologia , Tombusvirus/genética , Viroses/patologia , Viroses/virologia
9.
J Biol Chem ; 286(49): 42566-42574, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21965660

RESUMO

The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ∼10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.


Assuntos
Fator de Iniciação 4F em Eucariotos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Escherichia coli/metabolismo , Fator de Iniciação Eucariótico 4G/química , Isoenzimas/química , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Plantas/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Coelhos , Triticum/genética , Triticum/metabolismo
10.
Plant Physiol ; 150(4): 1844-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19493973

RESUMO

Eukaryotic initiation factor (eIF) 4B is known to interact with multiple initiation factors, mRNA, rRNA, and poly(A) binding protein (PABP). To gain a better understanding of the function of eIF4B, the two isoforms from Arabidopsis (Arabidopsis thaliana) were expressed and analyzed using biophysical and biochemical methods. Plant eIF4B was found by ultracentrifugation and light scattering analysis to most likely be a monomer with an extended structure. An extended structure would facilitate the multiple interactions of eIF4B with mRNA as well as other initiation factors (eIF4A, eIF4G, PABP, and eIF3). Eight mRNAs, barley (Hordeum vulgare) alpha-amylase mRNA, rabbit beta-hemoglobin mRNA, Arabidopsis heat shock protein 21 (HSP21) mRNA, oat (Avena sativa) globulin, wheat (Triticum aestivum) germin, maize (Zea mays) alcohol dehydrogenase, satellite tobacco necrosis virus RNA, and alfalfa mosaic virus (AMV) 4, were used in wheat germ in vitro translation assays to measure their dependence on eIF4B and eIF4F isoforms. The two Arabidopsis eIF4B isoforms, as well as native and recombinant wheat eIF4B, showed similar responses in the translation assay. AMV RNA 4 and Arabidopsis HSP21 showed only a slight dependence on the presence of eIF4B isoforms, whereas rabbit beta-hemoglobin mRNA and wheat germin mRNA showed modest dependence. Barley alpha-amylase, oat globulin, and satellite tobacco necrosis virus RNA displayed the strongest dependence on eIF4B. These results suggest that eIF4B has some effects on mRNA discrimination during initiation of translation. Barley alpha-amylase, oat globulin, and rabbit beta-hemoglobin mRNA showed the highest activity with eIF4F, whereas Arabidopsis HSP21 and AMV RNA 4 used both eIF4F and eIF(iso)4F equally well. These results suggest that differential or optimal translation of mRNAs may require initiation complexes composed of specific isoforms of initiation factor gene products. Thus, individual mRNAs or classes of mRNAs may respond to the relative abundance of a particular initiation factor(s), which in turn may affect the amount of protein translated. It is likely that optimal multifactor initiation complexes exist that allow for optimal translation of mRNAs under a variety of cellular conditions.


Assuntos
Arabidopsis/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Variação Genética , Biossíntese de Proteínas , Triticum/metabolismo , Anticorpos , Bioensaio , Western Blotting , Cromatografia em Gel , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Fator de Iniciação 4F em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos/imunologia , Luz , Peso Molecular , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espalhamento de Radiação , Alinhamento de Sequência , Ultracentrifugação
11.
Methods Enzymol ; 430: 397-408, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913646

RESUMO

Protein synthesis initiation factors from wheat germ were cloned into E. coli expression vectors for expression and purification. The ability to obtain large amounts of functional initiation factors and mutants of the factors will facilitate the biophysical and biochemical analysis of the process of initiation in plants. The initiation factors, eIF1, eIF1A, eIF4A, eIF4B, eIF4F, eIF(iso)4F, and eIF5, were successfully expressed and purified from E. coli. In most cases, the use of 6X-histidine tags was avoided to prevent any possible artifacts of folding or activity because of the presence of the tag. The amounts of highly purified wheat initiation factors obtained ranged from 0.5 to 24mg of protein per liter of culture, depending on the particular initiation factor. The initiation factors were of very high purity, and the activities of the wheat recombinant factors purified from E. coli were found to be comparable to or better than those purified from wheat germ.


Assuntos
Fatores de Iniciação em Eucariotos , Proteínas de Plantas , Proteínas Recombinantes , Triticum , Animais , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triticum/química , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...