Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Urol ; 41(7): 1929-1934, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37284842

RESUMO

BACKGROUND: The electrohydraulic high-frequency shock wave (Storz Medical, Taegerwilen, Switzerland) is a new way to create small fragments with frequencies up to 100 Hertz (Hz). This study evaluated the efficacy and safety of this method in a stone and porcine model. MATERIALS AND METHODS: BEGO stones were put in a condom in a specifically designed fixture treated with different modulations to see stone comminution. Standardized ex vivo porcine model with perfused kidneys with 26 upper and lower poles of 15 kidneys was treated with the following modulations: voltage 16-24 kV, capacitor 12 nF and frequency up to 100 Hz. 2000-20,000 shock waves were applied to each pole. The kidneys were perfused with barium sulfate solution (BaSO4) and x-ray was performed to quantify the lesions using pixel volumetry. RESULTS: There was no correlation between the number of shock waves and the powdering degree or the applied Energy and the grade of pulverization in the stone model. Regarding the perfused kidney model, the number of shock waves, applied voltage and frequency had no direct correlation with the occurrence of parenchymal lesions The detected lesions of the renal parenchyma were minimal, technical parameters had no significant impact and the lesions did not differ from the results of former experiments using 1-1.5 Hz in the same model. CONCLUSIONS: High-frequency shock wave lithotripsy can produce small stone fragments to pass in a very short time. The injury to the renal parenchyma is comparable to the results of the conventional SWL using 1-1.5 Hz.


Assuntos
Cálculos Renais , Litotripsia , Suínos , Animais , Cálculos Renais/patologia , Rim/diagnóstico por imagem , Rim/patologia , Litotripsia/métodos , Radiografia , Suíça
2.
Commun Biol ; 3(1): 541, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999405

RESUMO

Mouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ, providing a first longitudinal, 3D-spatial and quantitative account of ß-cell mass (BCM) dynamics and islet longevity in STZ-treated mice. We demonstrate that STZ-induced ß-cell destruction predominantly affects large islets in the pancreatic core. Further, we show that hyperglycemic STZ-treated mice still harbor a large pool of remaining ß-cells but display pancreas-wide downregulation of glucose transporter type 2 (GLUT2). Islet gene expression studies confirmed this downregulation and revealed impaired ß-cell maturity. Reversing hyperglycemia by islet transplantation partially restored the expression of markers for islet function, but not BCM. Jointly our results indicate that STZ-induced hyperglycemia results from ß-cell dysfunction rather than ß-cell ablation and that hyperglycemia in itself sustains a negative feedback loop restraining islet function recovery.


Assuntos
Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Transportador de Glucose Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
3.
Front Hum Neurosci ; 13: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890924

RESUMO

Transferring current research findings on the topic of learning and memory to "brain-based" learning in schools is of great interest among teachers. However, numerous international studies demonstrate that both pre-service and in-service teachers do not always succeed. Instead, they transfer numerous misconceptions about neuroscience, known as neuromyths, into pedagogical practice. As a result, researchers call for more neuroscience in teacher education in order to create a professional understanding of learning and memory. German pre-service science teachers specializing in biology complete neuroscientific modules (human biology/animal physiology) during their studies because they are expected to teach these topics to their students. Thus, they are required to demonstrate a certain degree of neuroscience literacy. In the present study, 550 pre-service science teachers were surveyed on neuromyths and scientific concepts about learning and memory. Pre-service science teachers' scientific concepts increased over the course of their training. However, beliefs in neuromyths were independent of participants' status within teacher education (first-year students, advanced students, and post-graduate trainees). The results showed that 10 neuromyths were endorsed by more than 50% of prospective science teachers. Beliefs in the existence of learning styles (93%) and the effectiveness of Brain Gym (92%) were most widespread. Many myths were endorsed even though a large share of respondents had thematically similar scientific concepts; endorsement of neuromyths was found to be largely independent of professional knowledge as well as theory-based and biography-based learning beliefs about neuroscience and learning. Our results suggest that neuromyths can exist in parallel to scientific concepts, professional knowledge and beliefs and are resistant to formal education. From the perspective of conceptual change theory, they thus exhibit characteristic traits of misconceptions that cannot simply be counteracted with increased neuroscientific knowledge. On the basis of our study's findings, it can be concluded that new teacher programs considering neuromyths as change-resistant misconceptions are needed to professionalize pre-service science teachers' neuroscience literacy. For this, an intensive web of exchange between the education field and neuroscientists is required, not just to deploy the latest scientific insights to refute neuromyths on learning and memory, but also to identify further neuromyths.

4.
Light Sci Appl ; 7: 70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302241

RESUMO

Light sheet fluorescence microscopy (LSFM) is rapidly becoming an essential technology for mesoscopic imaging of samples such as embryos and adult mouse organs. However, LSFM can suffer from optical artifacts for which there is no intrinsic solution. The attenuation of light due to absorbing material causes "shadow" artifacts along both the illumination and detection paths. Several approaches have been introduced to reduce this problem, including scanning illumination and multi-view imaging. However, neither of these approaches completely eliminates the problem. If the distribution of the absorbing material is complex, shadows cannot be avoided. We introduce a new approach that relies on multi-modal integration of two very different mesoscopic techniques. Unlike LSFM, optical projection tomography (OPT) can operate in transmission mode to create a voxel map of the 3D distribution of the sample's optical attenuation. Here, we demonstrate a hybrid instrument (OPTiSPIM) that can quantify this attenuation and use the information to correct the shadow artifacts of LSFM.

5.
Front Psychol ; 9: 2440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631290

RESUMO

Self-generation of knowledge can activate deeper cognitive processing and improve long-term retention compared to the passive reception of information. It plays a distinctive role within the concept of inquiry-based learning, which is an activity-oriented, student-centered collaborative learning approach in which students become actively involved in knowledge construction by following an idealized hypothetico-deductive method. This approach allows students to not only acquire content knowledge, but also an understanding of investigative procedures/inquiry skills - in particular the control-of-variables strategy (CVS). From the perspective of cognitive load theory, generating answers and solutions during inquiry-based learning is inefficient as it imposes an intrinsic and extraneous load on learners. Previous research on self-generation of content knowledge in inquiry-based learning has demonstrated that (1) a high cognitive load impairs retention of the generated information, (2) feedback is a fundamental requirement for self-generation of complex content knowledge, (3) self-generation success is key to long-term retention, and (4) generating and rereading place different demands on learners. However, there is still no research on the self-generation of scientific reasoning skills (procedural knowledge) and no knowledge of interaction between the (long-term) retention of these skills with prior knowledge, feedback and self-generation success. That is why this experiment was conducted. The focus of this research is to analyze the distinctive role of self-generation of scientific reasoning skills within the concept of inquiry-based learning and to identify the influence of prior knowledge and self-generation success on short-term and long-term retention. For this purpose, an experiment involving 133 6th and 7th graders was conducted. An inquiry activity that included the self-generation of scientific reasoning skills was compared to an inquiry task that had students simply read information about the experimental design. We used both an immediate and a delayed test to examine which treatment better developed a deeper understanding of CVS and an ability to apply this knowledge to novel problems (transfer). Direct instruction was clearly superior to self-generation in facilitating students' acquisition of CVS immediately after the inquiry task. However, after a period of 1 week had elapsed, both treatment conditions turned out to be equally effective. A generation effect was only found among students with high self-generation success after a 1-week delay.

6.
Opt Lett ; 39(4): 1053-6, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562276

RESUMO

Mesoscopic 3D imaging has become a widely used optical imaging technique to visualize intact biological specimens. Selective plane illumination microscopy (SPIM) visualizes samples up to a centimeter in size with micrometer resolution by 3D data stitching but is limited to fluorescent contrast. Optical projection tomography (OPT) works with fluorescent and nonfluorescent contrasts, but its resolution is limited in large samples. We present a hybrid setup (OPTiSPIM) combining the advantages of each technique. The combination of fluorescent and nonfluorescent high-resolution 3D data into integrated datasets enables a more extensive representation of mesoscopic biological samples. The modular concept of the OPTiSPIM facilitates incorporation of the transmission OPT modality into already established light sheet based imaging setups.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Tomografia Óptica/métodos , Animais , Embrião de Mamíferos/citologia , Linfonodos/citologia , Camundongos
7.
Blood ; 121(20): 4101-9, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23558016

RESUMO

It is not known how naive B cells compute divergent chemoattractant signals of the T-cell area and B-cell follicles during in vivo migration. Here, we used two-photon microscopy of peripheral lymph nodes (PLNs) to analyze the prototype G-protein-coupled receptors (GPCRs) CXCR4, CXCR5, and CCR7 during B-cell migration, as well as the integrin LFA-1 for stromal guidance. CXCR4 and CCR7 did not influence parenchymal B-cell motility and distribution, despite their role during B-cell arrest in venules. In contrast, CXCR5 played a nonredundant role in B-cell motility in follicles and in the T-cell area. B-cell migration in the T-cell area followed a random guided walk model, arguing against directed migration in vivo. LFA-1, but not α4 integrins, contributed to B-cell motility in PLNs. However, stromal network guidance was LFA-1 independent, uncoupling integrin-dependent migration from stromal attachment. Finally, we observed that despite a 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-cell screening of antigen-presenting cells. Our data provide an overview of the contribution of prototype GPCRs and integrins during naive B-cell migration and shed light on the local chemokine availability that these cells compute.


Assuntos
Linfócitos B/fisiologia , Comunicação Celular/fisiologia , Quimiocinas/fisiologia , Quimiotaxia de Leucócito/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores CCR7/fisiologia , Receptores CXCR4/fisiologia , Receptores CXCR5/fisiologia , Células Estromais/fisiologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/fisiologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Comunicação Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Feminino , Deleção de Genes , Antígeno-1 Associado à Função Linfocitária/fisiologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Células Estromais/metabolismo
8.
Comput Math Methods Med ; 2012: 128431, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049616

RESUMO

Deep tissue imaging has become state of the art in biology, but now the problem is to quantify spatial information in a global, organ-wide context. Although access to the raw data is no longer a limitation, the computational tools to extract biologically useful information out of these large data sets is still catching up. In many cases, to understand the mechanism behind a biological process, where molecules or cells interact with each other, it is mandatory to know their mutual positions. We illustrate this principle here with the immune system. Although the general functions of lymph nodes as immune sentinels are well described, many cellular and molecular details governing the interactions of lymphocytes and dendritic cells remain unclear to date and prevent an in-depth mechanistic understanding of the immune system. We imaged ex vivo lymph nodes isolated from both wild-type and transgenic mice lacking key factors for dendritic cell positioning and used software written in MATLAB to determine the spatial distances between the dendritic cells and the internal high endothelial vascular network. This allowed us to quantify the spatial localization of the dendritic cells in the lymph node, which is a critical parameter determining the effectiveness of an adaptive immune response.


Assuntos
Linfonodos/metabolismo , Algoritmos , Animais , Células da Medula Óssea/citologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Diagnóstico por Imagem/métodos , Feminino , Imageamento Tridimensional/métodos , Sistema Imunitário , Linfonodos/patologia , Linfonodos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Estatísticos , Software
9.
Biomed Opt Express ; 3(7): 1492-505, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808423

RESUMO

We present the implementation of a combined digital scanned light-sheet microscope (DSLM) able to work in the linear and nonlinear regimes under either Gaussian or Bessel beam excitation schemes. A complete characterization of the setup is performed and a comparison of the performance of each DSLM imaging modality is presented using in vivoCaenorhabditis elegans samples. We found that the use of Bessel beam nonlinear excitation results in better image contrast over a wider field of view.

10.
J Agric Food Chem ; 52(23): 6983-90, 2004 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-15537307

RESUMO

The enzymatic transgalactosylation from lactose to fructose leading to the prebiotic disaccharide lactulose was investigated using the beta-galactosidase from Aspergillus oryzae and the hyperthermostable beta-glycosidase from Pyrococcus furiosus (CelB). The conditions for highest lactulose yields relative to the initial lactose concentration were established on a 1 mL scale. Dependent on the initial molar ratio of lactose to fructose, more or fewer oligosaccharides other than lactulose were generated. Bioconversions on a 30 mL scale in a stirred glass reactor were performed, and lactulose yields of 46 mmol/L (44% relative to lactose) for CelB and 30 mmol/L (30% relative to lactose) for A. oryzae beta-galactosidase were achieved. Only <5% of other oligosaccharides were detectable. The corresponding productivities were 24 and 16 mmol/L/h, respectively. The molecular structure of lactulose was investigated in detail and confirmed after purification of the reaction solution by LC-MS and 1D and 2D NMR. Lactulose (4-O-beta-D-galactopyranosyl-D-fructose) was unambiguously proved to be the major transglycosylation disaccharide.


Assuntos
Lactulose/biossíntese , Lactulose/química , Espectroscopia de Ressonância Magnética , Aspergillus oryzae/enzimologia , Celulases/metabolismo , Frutose/metabolismo , Isomerismo , Lactose/metabolismo , Pyrococcus furiosus/enzimologia , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...