Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294941

RESUMO

Cool ambient temperatures are major cues determining flowering time in spring. The mechanisms promoting or delaying flowering in response to ambient temperature changes are only beginning to be understood. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) regulates flowering in the ambient temperature range and FLM is transcribed and alternatively spliced in a temperature-dependent manner. We identify polymorphic promoter and intronic sequences required for FLM expression and splicing. In transgenic experiments covering 69% of the available sequence variation in two distinct sites, we show that variation in the abundance of the FLM-ß splice form strictly correlate (R2 = 0.94) with flowering time over an extended vegetative period. The FLM polymorphisms lead to changes in FLM expression (PRO2+) but may also affect FLM intron 1 splicing (INT6+). This information could serve to buffer the anticipated negative effects on agricultural systems and flowering that may occur during climate change.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Haplótipos , Proteínas de Domínio MADS/metabolismo , Temperatura , Splicing de RNA
2.
Curr Opin Plant Biol ; 30: 33-40, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26866569

RESUMO

Monocots represent a monophyletic clade of the angiosperms that - based on fossil and molecular records - originated at around the Early Cretaceous from aquatic and wetland ancestors. Among their members are important crops including maize, wheat, rice, sorghum and barley, accounting for the major source for the daily calorie uptake by humans. Reflecting this importance, the partly large and complex genomes of these plants were major targets for ambitious and innovative sequencing projects, which will be discussed in this review article.


Assuntos
Genoma de Planta/genética , Hordeum/genética , Oryza/genética , Sorghum/genética , Triticum/genética , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/fisiologia , Oryza/fisiologia , Análise de Sequência de DNA , Sorghum/fisiologia , Triticum/fisiologia , Zea mays/fisiologia
3.
BMC Plant Biol ; 15: 99, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25887276

RESUMO

BACKGROUND: Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS: We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS: We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.


Assuntos
Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Plantas/genética
4.
BMC Genomics ; 15: 823, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25266061

RESUMO

BACKGROUND: High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far. RESULTS: We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel. CONCLUSIONS: The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available genotyping array in crop species.


Assuntos
Genômica/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Zea mays/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Desequilíbrio de Ligação/genética
5.
Plant Methods ; 9(1): 35, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24011260

RESUMO

The genomic sequences of many important Triticeae crop species are hard to assemble and analyse due to their large genome sizes, (in part) polyploid genomes and high repeat content. Recently, the draft genomes of barley and bread wheat were reported thanks to cost-efficient and fast NGS technologies. The genome of barley is estimated to be 5 Gb in size whereas the genome of bread wheat accounts for 17 Gb and harbours an allo-hexaploid genome. Direct assembly of the sequence reads and access to the gene content is hampered by the repeat content. As a consequence, novel strategies and data analysis concepts had to be developed to provide much-needed whole genome sequence surveys and access to the gene repertoires. Here we describe some analytical strategies that now enable structuring of massive NGS data generated and pave the way towards structured and ordered sequence data and gene order. Specifically we report on the GenomeZipper, a synteny driven approach to order and structure NGS survey sequences of grass genomes that lack a physical map. In addition, to access and analyse the gene repertoire of allo-hexaploid bread wheat from the raw sequence reads, a reference-guided approach was developed utilizing representative genes from rice, Brachypodium distachyon, sorghum and barley. Stringent sub-assembly on the reference genes prevented collapsing of homeologous wheat genes and allowed to estimate gene retention rate and determine gene family sizes. Genomic sequences from the wheat sub-genome progenitors enabled to discriminate a large number of sub-assemblies between the wheat A, B or D sub-genome using machine learning algorithms. Many of the concepts outlined here can readily be applied to other complex plant and non-plant genomes.

6.
BMC Res Notes ; 4: 411, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21999860

RESUMO

BACKGROUND: Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs) improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. RESULTS: Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library.Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. CONCLUSION: Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

7.
BMC Plant Biol ; 11: 131, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21951788

RESUMO

BACKGROUND: The improvement of agricultural crops with regard to yield, resistance and environmental adaptation is a perpetual challenge for both breeding and research. Exploration of the genetic potential and implementation of genome-based breeding strategies for efficient rye (Secale cereale L.) cultivar improvement have been hampered by the lack of genome sequence information. To overcome this limitation we sequenced the transcriptomes of five winter rye inbred lines using Roche/454 GS FLX technology. RESULTS: More than 2.5 million reads were assembled into 115,400 contigs representing a comprehensive rye expressed sequence tag (EST) resource. From sequence comparisons 5,234 single nucleotide polymorphisms (SNPs) were identified to develop the Rye5K high-throughput SNP genotyping array. Performance of the Rye5K SNP array was investigated by genotyping 59 rye inbred lines including the five lines used for sequencing, and five barley, three wheat, and two triticale accessions. A balanced distribution of allele frequencies ranging from 0.1 to 0.9 was observed. Residual heterozygosity of the rye inbred lines varied from 4.0 to 20.4% with higher average heterozygosity in the pollen compared to the seed parent pool. CONCLUSIONS: The established sequence and molecular marker resources will improve and promote genetic and genomic research as well as genome-based breeding in rye.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Secale/genética , Transcriptoma , Cruzamento , Etiquetas de Sequências Expressas , Frequência do Gene , Genômica/métodos , Técnicas de Genotipagem , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...