Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 43(6): 1804-10, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368175

RESUMO

Marine food webs are important links between Hg in the environment and human exposure via consumption of fish. Estuaries contain sediment repositories of Hg and are also critical habitat for marine fish and shellfish species consumed by humans. MeHg biotransfers from sites of production in estuarine sediments to higher trophic levels via both benthic and pelagic pathways. In this study, we investigated the potential for Hg biotransfer to estuarine food webs across a Hg contamination gradient in the Gulf of Maine. Despite the variation in sediment Hg concentrations across sites (>100 fold), Hg concentrations in biota ranged by only 2-4 fold for each species across sites. Sediment contamination alone explained some variation in Hg and MeHg concentrations in biota across sites. However, biogeochemical and ecological factors also explained significant variation in Hg bioaccumulation across species. Contaminated sites had higher total organic carbon concentrations in sediments, which related to a decrease in Hg bioaccumulation (measured as biota-sediment concentration factors). Moreover, concentrations of MeHg were higher in pelagic-feeding than benthic-feeding fauna (determined from delta13C), indicating the importance of pelagic pathways in transferring MeHg. Lastly, the proportion of total Hg as MeHg increased with trophic level (measured as delta15N). These results reveal the importance of both biogeochemical and ecological factors in determining the bioavailability and trophic transfer of MeHg in estuarine food webs.


Assuntos
Cadeia Alimentar , Mercúrio/metabolismo , Mercúrio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Disponibilidade Biológica , Embalagem de Alimentos , Fundulidae/metabolismo , Humanos , Invertebrados/metabolismo , Maine , Oceanos e Mares , Rios , Poluentes Químicos da Água/química
2.
Ecotoxicology ; 14(1-2): 135-47, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15934168

RESUMO

The northeastern USA receives some of the highest levels of atmospheric mercury deposition of any region in North America. Moreover, fish from many lakes in this region carry Hg burdens that present health risks to both human and wildlife consumers. The overarching goal of this study was to identify the attributes of lakes in this region that are most likely associated with high Hg burdens in fish. To accomplish this, we compared data collected in four separate multi-lake studies. Correlations among Hg in fish (4 studies) or in zooplankton and fish (2 studies) and numerous chemical, physical, land use, and ecological variables were compared across more than 150 lakes. The analysis produced three general findings. First, the most important predictors of Hg burdens in fish were similar among datasets. As found in past studies, key chemical covariates (e.g., pH, acid neutralizing capacity, and SO4) were negatively correlated with Hg bioaccumulation in the biota. However, negative correlations with several parameters that have not been previously identified (e.g., human land use variables and zooplankton density) were also found to be equally important predictors. Second, certain predictors were unique to individual datasets and differences in lake population characteristics, sampling protocols, and fish species in each study likely explained some of the contrasting results that we found in the analyses. Third, lakes with high rates of Hg bioaccumulation and trophic transfer have low pH and low productivity with relatively undisturbed watersheds suggesting that atmospheric deposition of Hg is the dominant or sole source of input. This study highlights several fundamental complexities when comparing datasets over different environmental conditions but also underscores the utility of such comparisons for revealing key drivers of Hg trophic transfer among different types of lakes.


Assuntos
Cadeia Alimentar , Mercúrio/farmacocinética , Poluentes da Água/farmacocinética , Animais , Peixes , Concentração de Íons de Hidrogênio , Mercúrio/análise , New England , Plâncton , Distribuição Tecidual , Água/química , Poluentes da Água/análise , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...