Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260389

RESUMO

The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. Recent insights highlight the pivotal role of CTD in driving condensate formation on gene loci. Yet, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulatory proteins, forms distinct condensates from unphosphorylated CTD. Function studies demonstrate CTD variants with diverse condensation properties in vitro exhibit difference in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths lead to alternative splicing outcomes impacting cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.

2.
Cell Metab ; 35(6): 1009-1021.e9, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084733

RESUMO

Insulin inhibits gluconeogenesis and stimulates glucose conversion to glycogen and lipids. How these activities are coordinated to prevent hypoglycemia and hepatosteatosis is unclear. Fructose-1,6-bisphosphatase (FBP1) is rate controlling for gluconeogenesis. However, inborn human FBP1 deficiency does not cause hypoglycemia unless accompanied by fasting or starvation, which also trigger paradoxical hepatomegaly, hepatosteatosis, and hyperlipidemia. Hepatocyte FBP1-ablated mice exhibit identical fasting-conditional pathologies along with AKT hyperactivation, whose inhibition reversed hepatomegaly, hepatosteatosis, and hyperlipidemia but not hypoglycemia. Surprisingly, fasting-mediated AKT hyperactivation is insulin dependent. Independently of its catalytic activity, FBP1 prevents insulin hyperresponsiveness by forming a stable complex with AKT, PP2A-C, and aldolase B (ALDOB), which specifically accelerates AKT dephosphorylation. Enhanced by fasting and weakened by elevated insulin, FBP1:PP2A-C:ALDOB:AKT complex formation, which is disrupted by human FBP1 deficiency mutations or a C-terminal FBP1 truncation, prevents insulin-triggered liver pathologies and maintains lipid and glucose homeostasis. Conversely, an FBP1-derived complex disrupting peptide reverses diet-induced insulin resistance.


Assuntos
Frutose , Hipoglicemia , Humanos , Camundongos , Animais , Frutose-Bifosfatase/genética , Proteínas Proto-Oncogênicas c-akt , Insulina , Hepatomegalia/complicações , Hipoglicemia/etiologia , Glucose
3.
Curr Opin Chem Biol ; 74: 102279, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966700

RESUMO

Eukaryotes depend upon the proper localization, accumulation, and release of intracellular Ca2+. This is regulated through specialized cellular compartments, signaling pathways, and Ca2+-binding proteins and channels. Cytosolic and extracellular signaling governing intracellular Ca2+ stores are well explored. However, regulatory signals within Ca2+ storage organelles like the endoplasmic/sarcoplasmic reticulum are not well understood. This is due to a lack of identified signaling molecules - like protein kinases - within these compartments, limited information on their regulation, and incomplete understanding of mechanisms involving modified substrates. Here we review recent advances in intralumenal signaling focusing on the secretory pathway protein kinase FAM20C and its regulation, Ca2+-binding protein substrates, and potential mechanisms through which FAM20C may regulate Ca2+ storage.


Assuntos
Cálcio , Retículo Sarcoplasmático , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Via Secretória , Retículo Endoplasmático/metabolismo , Fosfotransferases/metabolismo
4.
Nat Chem Biol ; 18(10): 1076-1086, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788180

RESUMO

The Hippo pathway plays a key role in development, organ size control and tissue homeostasis, and its dysregulation contributes to cancer. The LATS tumor suppressor kinases phosphorylate and inhibit the YAP/TAZ transcriptional co-activators to suppress gene expression and cell growth. Through a screen of marine natural products, we identified microcolin B (MCB) as a Hippo activator that preferentially kills YAP-dependent cancer cells. Structure-activity optimization yielded more potent MCB analogs, which led to the identification of phosphatidylinositol transfer proteins α and ß (PITPα/ß) as the direct molecular targets. We established a critical role of PITPα/ß in regulating LATS and YAP. Moreover, we showed that PITPα/ß influence the Hippo pathway via plasma membrane phosphatidylinositol-4-phosphate. This study uncovers a previously unrecognized role of PITPα/ß in Hippo pathway regulation and as potential cancer therapeutic targets.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Via de Sinalização Hippo , Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição/metabolismo
5.
J Bone Miner Res ; 36(8): 1548-1565, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905568

RESUMO

Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doenças Ósseas/genética , Células Germinativas , Mutagênese , Animais , Etilnitrosoureia , Humanos , Camundongos , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
6.
J Biol Chem ; 296: 100267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33759783

RESUMO

The study of extracellular phosphorylation was initiated in late 19th century when the secreted milk protein, casein, and egg-yolk protein, phosvitin, were shown to be phosphorylated. However, it took more than a century to identify Fam20C, which phosphorylates both casein and phosvitin under physiological conditions. This kinase, along with its family members Fam20A and Fam20B, defined a new family with altered amino acid sequences highly atypical from the canonical 540 kinases comprising the kinome. Fam20B is a glycan kinase that phosphorylates xylose residues and triggers peptidoglycan biosynthesis, a role conserved from sponges to human. The protein kinase, Fam20C, conserved from nematodes to humans, phosphorylates well over 100 substrates in the secretory pathway with overall functions postulated to encompass endoplasmic reticulum homeostasis, nutrition, cardiac function, coagulation, and biomineralization. The preferred phosphorylation motif of Fam20C is SxE/pS, and structural studies revealed that related member Fam20A allosterically activates Fam20C by forming a heterodimeric/tetrameric complex. Fam20A, a pseudokinase, is observed only in vertebrates. Loss-of-function genetic alterations in the Fam20 family lead to human diseases such as amelogenesis imperfecta, nephrocalcinosis, lethal and nonlethal forms of Raine syndrome with major skeletal defects, and altered phosphate homeostasis. Together, these three members of the Fam20 family modulate a diverse network of secretory pathway components playing crucial roles in health and disease. The overarching theme of this review is to highlight the progress that has been made in the emerging field of extracellular phosphorylation and the key roles secretory pathway kinases play in an ever-expanding number of cellular processes.


Assuntos
Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Caseína Quinase I/química , Retículo Endoplasmático/metabolismo , Proteínas da Matriz Extracelular/química , Homeostase , Humanos , Miocárdio/metabolismo , Fosforilação , Via Secretória , Transdução de Sinais , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Biol Chem ; 296: 100184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33310704

RESUMO

Magnesium ions play a critical role in catalysis by many enzymes and contribute to the fidelity of DNA polymerases through a two-metal ion mechanism. However, specificity is a kinetic phenomenon and the roles of Mg2+ ions in each step in the catalysis have not been resolved. We first examined the roles of Mg2+ by kinetic analysis of single nucleotide incorporation catalyzed by HIV reverse transcriptase. We show that Mg.dNTP binding induces an enzyme conformational change at a rate that is independent of free Mg2+ concentration. Subsequently, the second Mg2+ binds to the closed state of the enzyme-DNA-Mg.dNTP complex (Kd = 3.7 mM) to facilitate catalysis. Weak binding of the catalytic Mg2+ contributes to fidelity by sampling the correctly aligned substrate without perturbing the equilibrium for nucleotide binding at physiological Mg2+ concentrations. An increase of the Mg2+ concentration from 0.25 to 10 mM increases nucleotide specificity (kcat/Km) 12-fold largely by increasing the rate of the chemistry relative to the rate of nucleotide release. Mg2+ binds very weakly (Kd ≤ 37 mM) to the open state of the enzyme. Analysis of published crystal structures showed that HIV reverse transcriptase binds only two metal ions prior to incorporation of a correct base pair. Molecular dynamics simulations support the two-metal ion mechanism and the kinetic data indicating weak binding of the catalytic Mg2+. Molecular dynamics simulations also revealed the importance of the divalent cation cloud surrounding exposed phosphates on the DNA. These results enlighten the roles of the two metal ions in the specificity of DNA polymerases.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Magnésio/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Infecções por HIV/virologia , Transcriptase Reversa do HIV/química , HIV-1/química , HIV-1/metabolismo , Humanos , Cinética , Magnésio/química , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
8.
ACS Chem Biol ; 15(8): 2259-2272, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32568517

RESUMO

The phosphorylation states of RNA polymerase II coordinate the process of eukaryotic transcription by recruitment of transcription regulators. The individual residues of the repetitive heptad of the C-terminal domain (CTD) of the biggest subunit of RNA polymerase II are phosphorylated temporally at different stages of transcription. Intriguingly, despite similar flanking residues, phosphorylation of Ser2 and Ser5 in CTD heptads play dramatically different roles. The mechanism of how the kinases place phosphorylation on the correct serine is not well understood. In this paper, we use biochemical assays, mass spectrometry, molecular modeling, and structural analysis to understand the structural elements determining which serine of the CTD heptad is subject to phosphorylation. We identified three motifs in the activation/P+1 loops differentiating the intrinsic specificity of CTD in various CTD kinases. We characterized the enzyme specificity of the CTD kinases-CDK7 as Ser5-specific, Erk2 with dual specificity for Ser2 and Ser5, and Dyrk1a as a Ser2-specific kinase. We also show that the specificities of kinases are malleable and can be modified by incorporating mutations in their activation/P+1 loops that alter the interactions of the three motifs. Our results provide an important clue to the understanding of post-translational modification of RNA polymerase II temporally during active transcription.


Assuntos
Proteínas Quinases/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/metabolismo , Receptor com Domínio Discoidina 1 , Humanos , Espectrometria de Massas/métodos , Fosforilação , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Bio Protoc ; 10(12): e3648, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659319

RESUMO

Eukaryotic RNA polymerase II transcribes all protein-coding mRNAs and is highly regulated. A key mechanism directing RNA polymerase II and facilitating the co-transcriptional processing of mRNAs is the phosphorylation of its highly repetitive carboxyl-terminal domain (CTD) of its largest subunit, RPB1, at specific residues. A variety of techniques exist to identify and quantify the degree of CTD phosphorylation, including phosphorylation-specific antibodies and mass spectrometry. Electrophoretic mobility shift assays (EMSAs) have been utilized since the discovery of CTD phosphorylation and continue to represent a simple, direct, and widely applicable approach for qualitatively monitoring CTD phosphorylation. We present a standardized method for EMSA analysis of recombinant GST-CTD substrates phosphorylated by a variety of CTD kinases. Strategies to analyze samples under both denatured/reduced and semi-native conditions are provided. This method represents a simple, direct, and reproducible means to monitor CTD phosphorylation in recombinant substrates utilizing equipment common to molecular biology labs and readily applicable to downstream analyses including immunoblotting and mass spectrometry.

10.
Proc Natl Acad Sci U S A ; 116(49): 24881-24891, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31754034

RESUMO

Dependence on the 26S proteasome is an Achilles' heel for triple-negative breast cancer (TNBC) and multiple myeloma (MM). The therapeutic proteasome inhibitor, bortezomib, successfully targets MM but often leads to drug-resistant disease relapse and fails in breast cancer. Here we show that a 26S proteasome-regulating kinase, DYRK2, is a therapeutic target for both MM and TNBC. Genome editing or small-molecule mediated inhibition of DYRK2 significantly reduces 26S proteasome activity, bypasses bortezomib resistance, and dramatically delays in vivo tumor growth in MM and TNBC thereby promoting survival. We further characterized the ability of LDN192960, a potent and selective DYRK2-inhibitor, to alleviate tumor burden in vivo. The drug docks into the active site of DYRK2 and partially inhibits all 3 core peptidase activities of the proteasome. Our results suggest that targeting 26S proteasome regulators will pave the way for therapeutic strategies in MM and TNBC.


Assuntos
Bortezomib/farmacologia , Processos Neoplásicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , TYK2 Quinase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Linhagem Celular Tumoral , Feminino , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mieloma Múltiplo , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Neoplasias de Mama Triplo Negativas/patologia , Quinases Dyrk
11.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31385803

RESUMO

The Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of the C-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes an accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD's coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.


Assuntos
Fator B de Elongação Transcricional Positiva/metabolismo , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Serina/metabolismo , Tirosina/metabolismo , Humanos , Fosforilação , Transcrição Gênica
12.
Neuropharmacology ; 146: 289-299, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419244

RESUMO

Alcohol use disorder (AUD) and major depressive disorder (MDD) are prevalent, debilitating, and highly comorbid disorders. The molecular changes that underlie their comorbidity are beginning to emerge. For example, recent evidence showed that acute ethanol exposure produces rapid antidepressant-like biochemical and behavioral responses. Both ethanol and fast-acting antidepressants block N-methyl-D-aspartate receptor (NMDAR) activity, leading to synaptic changes and long-lasting antidepressant-like behavioral effects. We used RNA sequencing to analyze changes in the synaptic transcriptome after acute treatment with ethanol or the NMDAR antagonist, Ro 25-6981. Ethanol and Ro 25-6981 induced differential, independent changes in gene expression. In contrast with gene-level expression, ethanol and Ro 25-6981 produced overlapping changes in exons, as measured by analysis of differentially expressed exons (DEEs). A prominent overlap in genes with DEEs indicated that changes in exon usage were important for both ethanol and Ro 25-6981 action. Structural modeling provided evidence that ethanol-induced exon expression in the NMDAR1 amino-terminal domain could induce conformational changes and thus alter NMDAR function. These findings suggest that the rapid antidepressant effects of ethanol and NMDAR antagonists reported previously may depend on synaptic exon usage rather than gene expression.


Assuntos
Alcoolismo/genética , Transtorno Depressivo Maior/genética , Éxons/efeitos dos fármacos , Éxons/genética , Expressão Gênica/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Antidepressivos/farmacologia , Comorbidade , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de Neurotransmissores , Transcriptoma
13.
Elife ; 72018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520731

RESUMO

Ca2+ signaling is important for many cellular and physiological processes, including cardiac function. Although sarcoplasmic reticulum (SR) proteins involved in Ca2+ signaling have been shown to be phosphorylated, the biochemical and physiological roles of protein phosphorylation within the lumen of the SR remain essentially uncharacterized. Our laboratory recently identified an atypical protein kinase, Fam20C, which is uniquely localized to the secretory pathway lumen. Here, we show that Fam20C phosphorylates several SR proteins involved in Ca2+ signaling, including calsequestrin2 and Stim1, whose biochemical activities are dramatically regulated by Fam20C mediated phosphorylation. Notably, phosphorylation of Stim1 by Fam20C enhances Stim1 activation and store-operated Ca2+ entry. Physiologically, mice with Fam20c ablated in cardiomyocytes develop heart failure following either aging or induced pressure overload. We extended these observations to show that non-muscle cells lacking Fam20C display altered ER Ca2+ signaling. Overall, we show that Fam20C plays an overarching role in ER/SR Ca2+ homeostasis and cardiac pathophysiology.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Proteínas da Matriz Extracelular/genética , Insuficiência Cardíaca/genética , Molécula 1 de Interação Estromal/genética , Animais , Cálcio/química , Cálcio/metabolismo , Sinalização do Cálcio/genética , Proteínas de Ligação ao Cálcio/química , Calsequestrina/química , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Proteínas da Matriz Extracelular/química , Insuficiência Cardíaca/patologia , Homeostase , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Fosfotransferases/genética , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/genética , Via Secretória/genética , Molécula 1 de Interação Estromal/química
14.
J Biol Chem ; 293(43): 16851-16861, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30217818

RESUMO

The RE1-silencing transcription factor (REST) is the major scaffold protein for assembly of neuronal gene silencing complexes that suppress gene transcription through regulating the surrounding chromatin structure. REST represses neuronal gene expression in stem cells and non-neuronal cells, but it is minimally expressed in neuronal cells to ensure proper neuronal development. Dysregulation of REST function has been implicated in several cancers and neurological diseases. Modulating REST gene silencing is challenging because cellular and developmental differences can affect its activity. We therefore considered the possibility of modulating REST activity through its regulatory proteins. The human small C-terminal domain phosphatase 1 (SCP1) regulates the phosphorylation state of REST at sites that function as REST degradation checkpoints. Using kinetic analysis and direct visualization with X-ray crystallography, we show that SCP1 dephosphorylates two degron phosphosites of REST with a clear preference for phosphoserine 861 (pSer-861). Furthermore, we show that SCP1 stabilizes REST protein levels, which sustains REST's gene silencing function in HEK293 cells. In summary, our findings strongly suggest that REST is a bona fide substrate for SCP1 in vivo and that SCP1 phosphatase activity protects REST against degradation. These observations indicate that targeting REST via its regulatory protein SCP1 can modulate its activity and alter signaling in this essential developmental pathway.


Assuntos
Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Cristalografia por Raios X , Inativação Gênica , Células HEK293 , Humanos , Cinética , Neurônios/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Fosforilação , Estabilidade Proteica , Proteólise , Proteínas Repressoras/genética
15.
Proc Natl Acad Sci U S A ; 115(32): 8155-8160, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29987021

RESUMO

Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Curcumina/uso terapêutico , Sinergismo Farmacológico , Feminino , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos , Neoplasias/patologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Dyrk
16.
Nat Commun ; 8: 15231, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28497792

RESUMO

RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Fosforilação , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , Transcrição Gênica
17.
ACS Chem Biol ; 12(1): 153-162, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103682

RESUMO

Phosphorylation of the C-terminal domain of RNA polymerase II (CTD) plays an essential role in eukaryotic transcription by recruiting transcriptional regulatory factors to the active polymerase. However, the scarcity of basic residues and repetitive nature of the CTD sequence impose a huge challenge for site-specific characterization of phosphorylation, hindering our understanding of this crucial biological process. Herein, we apply LC-UVPD-MS methods to analyze post-translational modification along native sequence CTDs. Application of our method to the Drosophila melanogaster CTD reveals the phosphorylation pattern of this model organism for the first time. The divergent nature of fly CTD allows us to derive rules defining how flanking residues affect phosphorylation choice by CTD kinases. Our data support the use of LC-UVPD-MS to decipher the CTD code and determine rules that program its function.


Assuntos
Drosophila melanogaster/enzimologia , Espectrometria de Massas/métodos , RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Animais , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta
18.
Sci Signal ; 9(417): ra24, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26933063

RESUMO

Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families.


Assuntos
Domínio Catalítico , Fosfoproteínas Fosfatases/química , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Himecromona/análogos & derivados , Himecromona/metabolismo , Cinética , Toxinas Marinhas , Metais/química , Metais/metabolismo , Modelos Moleculares , Mutação , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfatos/química , Sulfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Biochim Biophys Acta ; 1864(4): 372-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26779935

RESUMO

The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.


Assuntos
Fosfoproteínas Fosfatases/fisiologia , RNA Polimerase II/metabolismo , Células Eucarióticas/enzimologia , Fosforilação , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica
20.
ACS Chem Biol ; 10(10): 2405-14, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26332362

RESUMO

Proline isomerization greatly impacts biological signaling but is subtle and difficult to detect in proteins. We characterize this poorly understood regulatory mechanism for RNA polymerase II carboxyl terminal domain (CTD) phosphorylation state using novel, direct, and quantitative chemical tools. We determine the proline isomeric preference of three CTD phosphatases: Ssu72 as cis-proline specific, Scp1 and Fcp1 as strongly trans-preferred. Due to this inherent characteristic, these phosphatases respond differently to enzymes that catalyze the isomerization of proline, like Ess1/Pin1. We demonstrate that this selective regulation of RNA polymerase II phosphorylation state exists within human cells, consistent with in vitro assays. These results support a model in which, instead of a global enhancement of downstream enzymatic activities, proline isomerases selectively boost the activity of a subset of CTD regulatory factors specific for cis-proline. This leads to diversified phosphorylation states of CTD in vitro and in cells. We provide the chemical tools to investigate proline isomerization and its ability to selectively enhance signaling in transcription and other biological contexts.


Assuntos
Modelos Biológicos , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Prolina/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Animais , Western Blotting , Cristalografia por Raios X , Drosophila/enzimologia , Ativação Enzimática/fisiologia , Humanos , Isomerismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...