Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pain ; 16: 1744806920971914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33241748

RESUMO

Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Regulação da Expressão Gênica no Desenvolvimento , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Neuralgia/genética , Animais , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Transdução de Sinais/genética
2.
Sci Rep ; 6: 33132, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605043

RESUMO

Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Movimento Celular/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosforilação/genética , Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , RNA Mensageiro/genética
3.
Brain Behav Immun ; 42: 69-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24989856

RESUMO

A number of studies have identified that mutations in the P2X7 receptor occur with a significantly higher incidence in individuals with major depression. Consistent with these findings, a number of preclinical studies have identified that mice in which the P2X7 receptor has been deleted exhibit a higher level of resilience-like behaviour to acutely aversive situations. At present, however, no studies have examined changes in P2X7 receptor expression in otherwise healthy animals exposed to persistently stressful situations. This is significant as several lines of evidence have demonstrated that it is exposure to persistently aversive, rather than acutely aversive, situations that is associated with the emergence of mood disturbance. Accordingly, the objective of the current study was to examine whether chronic exposure to restraint stress was associated with alterations in the expression of P2X7 within the hippocampal formation. The study involved three principal groups: acute stress (1 session), chronic stress (21 sessions, 1 per day) and a chronic stress with recovery group (21 sessions, 1 per day followed by 7days of no stress) and appropriate control groups. The results of the analysis indicate that all forms of stress, regardless of the duration, provoked a reduction in P2X7 receptor expression. Comparative analysis on normalised data indicated that the magnitude of the P2X7 reduction was significantly greater in the chronic stress relative to the acute stress group. We additionally found that there was a gradual rebound in P2X7 expression, in two of nine regions examined, in animals that were allowed to recover for 7days following the final stress session. Collectively, these findings provide the first evidence that exposure to chronic restraint stress produces a pronounced and relatively persistent suppression of the P2X7 receptor within the hippocampus.


Assuntos
Hipocampo/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Masculino , Ratos , Ratos Sprague-Dawley , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...