Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(6): 2386-2393, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38362530

RESUMO

Hansen solubility parameters (HSP) of 15 commercially relevant biobased and biodegradable polyesters were experimentally determined by applying a novel approach to the classic solubility study method. In this approach, the extent of swelling in polymer films was determined using a simple equation based on the mass difference between swollen and nonswollen film samples to obtain normalized solvent uptake (N). Using N and HSPiP software, highly accurate HSP values were obtained for all 15 polyesters. Qualitative evaluation of the HSP values was conducted by predicting the miscibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-co-HHx, 7 mol % HHx) and poly(lactic acid) (PLA) with a novel lignin-based plasticizer (ethyl 3-(4-ethoxy-3-methoxyphenyl)propanoate, EP) with a relative energy difference (RED) less than 0.4. Additionally, an HSP-predicted plasticizer (di(2-ethylhexyl) adipate, DA) with a larger RED (>0.7) was used to demonstrate the effects of less-miscible additives. Plasticized samples were analyzed by differential scanning calorimetry and polarized optical microscopy (POM) to determine the Tg depression, with EP showing linear Tg depression up to 50% plasticizer loading, whereas DA shows minimal Tg depression past 10% loading. Further analysis by POM reveals that the DA phase separates from both polymers at loadings as low as 2.5% (PHB-co-HHx, 7 mol % HHx) and 5% (PLA), while the EP phase separates at a much higher loading of 50% (PHB-co-HHx, 7 mol% HHx) and 30% (PLA).

2.
J Org Chem ; 85(15): 9905-9914, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614582

RESUMO

Ortho-benzyne has been well studied by both experiment and theory. Its substituted variants, however, have been less carefully examined. Benchmark data are computed for unsubstituted ortho-benzyne using several density functional theory functionals and basis sets, up to cc-pVQZ. Optimized geometries for the substituted ortho-benzyne as well as harmonic vibrational frequencies and singlet-triplet splittings are computed using the benchmarked functionals. A proximal (syn)OH substitution causes a mean θ1 distortion of +8.1 ± 1.4° from ortho-benzyne. Substituting in the proximal position with F shifts the singlet-triplet splitting by +4.5 ± 0.4 kcal mol-1 from ortho-benzyne. Natural bond orbital analysis, including natural Coulomb electrostatics, elucidates the presence of three influences from the selected substituents: hyperconjugative, resonance, and electrostatic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...