Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Microbiome Res Rep ; 3(2): 26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841404

RESUMO

Aim: Our gut microbiome has its own functionalities which can be modulated by various xenobiotic and biotic components. The development and application of a high-throughput functional screening approach of individual gut microbiomes accelerates drug discovery and our understanding of microbiome-drug interactions. We previously developed the rapid assay of individual microbiome (RapidAIM), which combined an optimized culturing model with metaproteomics to study gut microbiome responses to xenobiotics. In this study, we aim to incorporate automation and multiplexing techniques into RapidAIM to develop a high-throughput protocol. Methods: To develop a 2.0 version of RapidAIM, we automated the protein analysis protocol, and introduced a tandem mass tag (TMT) multiplexing technique. To demonstrate the typical outcome of the protocol, we used RapidAIM 2.0 to evaluate the effect of prebiotic kestose on ex vivo individual human gut microbiomes biobanked with five different workflows. Results: We describe the protocol of RapidAIM 2.0 with extensive details on stool sample collection, biobanking, in vitro culturing and stimulation, sample processing, metaproteomics measurement, and data analysis. The analysis depth of 5,014 ± 142 protein groups per multiplexed sample was achieved. A test on five biobanking methods using RapidAIM 2.0 showed the minimal effect of sample processing on live microbiota functional responses to kestose. Conclusions: Depth and reproducibility of RapidAIM 2.0 are comparable to previous manual label-free metaproteomic analyses. In the meantime, the protocol realizes culturing and sample preparation of 320 samples in six days, opening the door to extensively understanding the effects of xenobiotic and biotic factors on our internal ecology.

2.
Comput Struct Biotechnol J ; 21: 4228-4237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692080

RESUMO

Metaproteomics has increasingly been applied to study functional changes in the human gut microbiome. Peptide identification is an important step in metaproteomics research, with sequence database search (SDS) and spectral library search (SLS) as the two main methods to identify peptides. However, the large search space in metaproteomics studies causes significant challenges for both identification methods. Moreover, with the development of mass spectrometry, it is now feasible to perform metaproteomic projects involving 100-1000 individual microbiomes. These large-scale projects create a conundrum for searching large databases. In this study, we constructed MetaPep, a core peptide database (including both collections of peptide sequences and tandem MS spectra) greatly accelerating the peptide identifications. Raw files from fifteen metaproteomics projects were re-analyzed and the identified peptide-spectrum matches (PSMs) were used to construct the MetaPep database. The constructed MetaPep database achieved rapid and accurate identification of peptides for human gut metaproteomics. MetaPep has a large collection of peptides and spectra that have been identified in published human gut metaproteomics datasets. MetaPep database can be used as an important resource in the current stage of human gut metaproteomics research. This study showed the possibility of applying a core peptide database as a generic metaproteomics workflow. MetaPep could also be an important resource for future human gut metaproteomics research, such as DIA (data-independent acquisition) analysis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37589783

RESUMO

The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual. Metaproteomics was used to evaluate changes in microbial communities of the human intestinal microbiome. Hierarchical clustering analysis revealed 654 differentially abundant proteins from the metaproteome samples, showing that gut microbial protein expression varied on the presence of different E. durans secretomes. Increased amount of Bacteroidetes phylum was observed in treatments with secretomes from E. durans cultures on FOS, GOS and albumin, resulting in a decrease of the Firmicutes to Bacteroidetes (F/B) ratio. The most functionally abundant bacterial taxa were Roseburia, Bacteroides, Alistipes and Faecalibacterium. The results suggest that the secretome of E. durans may have favorable effects on the intestinal microbial composition, stimulating growth and different protein expression of beneficial bacteria. These findings suggest that proteins secreted by E. durans growing on FOS and GOS have different effects on the modulation of gut microbiota functional activities during cultivation.

4.
Biophys J ; 122(18): 3783-3797, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37559362

RESUMO

Membrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity. We expressed a fluorescent LDLR-mEGFP construct in HEK293T cells and imaged the unligated receptor or bound to an LDL/DiI fluorescent ligand using total internal reflection fluorescence microscopy. We studied the receptor's spatiotemporal dynamics using fluorescence fluctuation analysis methods. Image cross correlation spectroscopy reveals a lower LDL-to-LDLR binding fraction when membrane cholesterol concentrations are augmented using cholesterol esterase, and a higher binding fraction when the cells are treated with methyl-ß-cyclodextrin) to lower membrane cholesterol. This suggests that LDLR's ability to metabolize LDL particles is negatively correlated to membrane cholesterol concentrations. We then tested if a change in activity is accompanied by a change in membrane localization. Image mean-square displacement analysis reveals that unligated LDLR-mEGFP and ligated LDLR-mEGFP/LDL-DiI constructs are transiently confined on the cell membrane, and the size of their confinement domains increases with augmented cholesterol concentrations. Receptor diffusion within the domains and their domain-escape probabilities decrease upon treatment with methyl-ß-cyclodextrin, consistent with a change in receptor populations to more confined domains, likely clathrin-coated pits. We propose a feedback model to account for regulation of LDLR within the cell membrane: when membrane cholesterol concentrations are high, LDLR is sequestered in cholesterol-rich domains. These LDLR populations are attenuated in their efficacy to bind and internalize LDL. However, when membrane cholesterol levels drop, LDL has a higher binding affinity to its receptor and the LDLR transits to nascent clathrin-coated domains, where it diffuses at a slower rate while awaiting internalization.


Assuntos
Colesterol , Receptores de LDL , Humanos , Colesterol/metabolismo , Clatrina/metabolismo , Fluorescência , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo
5.
Nat Commun ; 14(1): 3428, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301875

RESUMO

Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy [Formula: see text]) of human microbiomes has been recently quantified using metagenomics data. Yet, the redundancy of expressed functions in the human microbiome has never been quantitatively explored. Here, we present an approach to quantify the proteome-level functional redundancy [Formula: see text] in the human gut microbiome using metaproteomics. Ultra-deep metaproteomics reveals high proteome-level functional redundancy and high nestedness in the human gut proteomic content networks (i.e., the bipartite graphs connecting taxa to functions). We find that the nested topology of proteomic content networks and relatively small functional distances between proteomes of certain pairs of taxa together contribute to high [Formula: see text] in the human gut microbiome. As a metric comprehensively incorporating the factors of presence/absence of each function, protein abundances of each function and biomass of each taxon, [Formula: see text] outcompetes diversity indices in detecting significant microbiome responses to environmental factors, including individuality, biogeography, xenobiotics, and disease. We show that gut inflammation and exposure to specific xenobiotics can significantly diminish the [Formula: see text] with no significant change in taxonomic diversity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Proteoma , Proteômica , Xenobióticos , Fezes
6.
Cell Death Dis ; 14(2): 138, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36801910

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD. However, the age at which this defect first appears remains unknown. To determine at which stage, from birth to adulthood, the neurogenic deficits are found in AD, we used the triple transgenic mouse model of AD (3xTg). We show that defects in neurogenesis are present as early as postnatal stages, well before the onset of any neuropathology or behavioral deficits. We also show that 3xTg mice have significantly fewer neural stem/progenitor cells, with reduced proliferation and decreased numbers of newborn neurons at postnatal stages, consistent with reduced volumes of hippocampal structures. To determine whether there are early changes in the molecular signatures of neural stem/progenitor cells, we perform bulk RNA-seq on cells sorted directly from the hippocampus. We show significant changes in the gene expression profiles at one month of age, including genes of the Notch and Wnt pathways. These findings reveal impairments in neurogenesis very early in the 3xTg AD model, which provides new opportunities for early diagnosis and therapeutic interventions to prevent neurodegeneration in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Neurogênese/genética , Camundongos Transgênicos , Hipocampo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças
7.
J Proteome Res ; 22(2): 387-398, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36508259

RESUMO

The studies of microbial communities have drawn increased attention in various research fields such as agriculture, environment, and human health. Recently, metaproteomics has become a powerful tool to interpret the roles of the community members by investigating the expressed proteins of the microbes. However, analyzing the metaproteomic data sets at genome resolution is still challenging because of the lack of efficient bioinformatics tools. Here we develop MetaLab-MAG, a specially designed tool for the characterization of microbiomes from metagenome-assembled genomes databases. MetaLab-MAG was evaluated by analyzing various human gut microbiota data sets and performed comparably or better than searching the gene catalog protein database directly. MetaLab-MAG can quantify the genome-level microbiota compositions and supports both label-free and isobaric labeling-based quantification strategies. MetaLab-MAG removes the obstacles of metaproteomic data analysis and provides the researchers with in-depth and comprehensive information from the microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Metagenoma , Proteômica , Microbiota/genética , Microbioma Gastrointestinal/genética , Biologia Computacional , Metagenômica
8.
Proteomics ; 23(21-22): e2200116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36528842

RESUMO

Multiplexed quantitative proteomics using tandem mass tag (TMT) is increasingly used in -omic study of complex samples. While TMT-based proteomics has the advantages of the higher quantitative accuracy, fewer missing values, and reduced instrument analysis time, it is limited by the additional reagent cost. In addition, current TMT labeling workflows involve repeated small volume pipetting of reagents in volatile solvents, which may increase the sample-to-sample variations and is not readily suitable for high throughput applications. In this study, we demonstrated that the TMT labeling procedures could be streamlined by using pre-aliquoted dry TMT reagents in a 96 well plate or 12-tube strip. As little as 50 µg dry TMT per channel was used to label 6-12 µg peptides, yielding high TMT labeling efficiency (∼99%) in both microbiome and mammalian cell line samples. We applied this workflow to analyze 97 samples in a study to evaluate whether ice recrystallization inhibitors improve the cultivability and activity of frozen microbiota. The results demonstrated tight sample clustering corresponding to groups and consistent microbiome responses to prebiotic treatments. This study supports the use of TMT reagents that are pre-aliquoted, dried, and stored for robust quantitative proteomics and metaproteomics in high throughput applications.


Assuntos
Microbiota , Proteômica , Animais , Proteômica/métodos , Peptídeos/análise , Fluxo de Trabalho , Proteoma/análise , Mamíferos/metabolismo
9.
Anal Chem ; 94(45): 15648-15654, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327159

RESUMO

The human gut microbiome is a complex system composed of hundreds of species, and metaproteomics can be used to explore their expressed functions. However, many lower abundance species are not detected by current metaproteomic techniques and represent the dark field of metaproteomics. We do not know the minimal abundance of a bacterium in a microbiome(depth) that can be detected by shotgun metaproteomics. In this study, we spiked 15N-labeled E. coli peptides at different percentages into peptides mixture derived from the human gut microbiome to evaluate the depth that can be achieved by shotgun metaproteomics. We observed that the number of identified peptides and peptide intensity from 15N-labeled E. coli were linearly correlated with the spike-in levels even when 15N-labeled E. coli was down to 0.5% of the biomass. Below that level, it was not detected. Interestingly, the match-between-run strategy significantly increased the number of quantified peptides even when 15N-labeled E. coli peptides were at low abundance. This is indicative that in metaproteomics of complex gut microbiomes many peptides from low abundant species are likely observable in MS1 but are not selected for MS2 by standard shotgun strategies.


Assuntos
Microbioma Gastrointestinal , Proteômica , Humanos , Proteômica/métodos , Escherichia coli , Bactérias , Peptídeos
10.
Microbiol Spectr ; 10(4): e0041222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35695565

RESUMO

The composition and function of the human gut microbiome are often associated with health and disease status. Sugar substitute sweeteners are widely used food additives, although many studies using animal models have linked sweetener consumption to gut microbial changes and health issues. Whether sugar substitute sweeteners directly change the human gut microbiome functionality remains largely unknown. In this study, we systematically investigated the responses of five human gut microbiomes to 21 common sugar substitute sweeteners, using an approach combining high-throughput in vitro microbiome culturing and metaproteomic analyses to quantify functional changes in different taxa. Hierarchical clustering based on metaproteomic responses of individual microbiomes resulted in two clusters. The noncaloric artificial sweetener (NAS) cluster was composed of NASs and two sugar alcohols with shorter carbon backbones (4 or 5 carbon atoms), and the carbohydrate (CHO) cluster was composed of the remaining sugar alcohols. The metaproteomic functional responses of the CHO cluster were clustered with those of the prebiotics fructooligosaccharides and kestose. The sugar substitute sweeteners in the CHO cluster showed the ability to modulate the metabolism of Clostridia. This study provides a comprehensive evaluation of the direct effects of commonly used sugar substitute sweeteners on the functions of the human gut microbiome using a functional metaproteomic approach, improving our understanding of the roles of sugar substitute sweeteners on microbiome-associated human health and disease issues. IMPORTANCE The human gut microbiome is closely related to human health. Sugar substitute sweeteners as commonly used food additives are increasingly consumed and have potential impacts on microbiome functionality. Although many studies have evaluated the effects of a few sweeteners on gut microbiomes using animal models, the direct effect of sugar substitute sweeteners on the human gut microbiome remains largely unknown. Our results revealed that the sweetener-induced metaproteomic responses of individual microbiomes had two major patterns, which were associated with the chemical properties of the sweeteners. This study provided a comprehensive evaluation of the effects of commonly used sugar substitute sweeteners on the human gut microbiome.


Assuntos
Microbioma Gastrointestinal , Animais , Carbono , Aditivos Alimentares/farmacologia , Humanos , Álcoois Açúcares/farmacologia , Edulcorantes/farmacologia
11.
Gut Microbes ; 14(1): 2035658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130123

RESUMO

Biobanking of live microbiota is becoming indispensable for mechanistic and clinical investigations of drug-microbiome interactions and fecal microbiota transplantation. However, there is a lack of methods to rapidly and systematically evaluate whether the biobanked microbiota maintains their cultivability and functional activity. In this study, we use a rapid ex vivo microbiome assay and metaproteomics to evaluate the cultivability and the functional responses of biobanked microbiota to treatment with a prebiotic (fructo-oligosaccharide, FOS). Our results indicate that the microbiota cultivability and their functional responses to FOS treatment were well maintained by freezing in a deoxygenated glycerol buffer at -80°C for 12 months. We also demonstrate that the fecal microbiota is functionally stable for 48 hours on ice in a deoxygenated glycerol buffer, allowing off-site fecal sample collection and shipping to laboratory for live microbiota biobanking. This study provides a method for rapid evaluation of the cultivability of biobanked live microbiota. Our results show minimal detrimental influences of long-term freezing in deoxygenated glycerol buffer on the cultivability of fecal microbiota.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Preservação Biológica/métodos , Proteômica/métodos , Bactérias/química , Bactérias/metabolismo , Bancos de Espécimes Biológicos , Fezes/microbiologia , Humanos , Viabilidade Microbiana , Prebióticos/análise
12.
Viruses ; 13(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578313

RESUMO

Salmonella infections (salmonellosis) pose serious health risks to humans, usually via food-chain contamination. This foodborne pathogen causes major food losses and human illnesses, with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-resistant strains of bacteria, and governments are now restricting their use, leading the food industry to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria, are currently being investigated and used as replacement treatments and prophylactics due to their specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are natural components of the ecosystem. However, when specifically used in the industry, they can also make their way into humans through our food chain or exposure, as is the case for antibiotics. In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented to animal feeds. To our knowledge, no studies have investigated the effects of such exposure to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition and function were unaffected by BAFASAL® treatment, providing an additional measure for its safety. Due to the critical role of the gut microbiome in human health and the known role of bacteriophages in regulation of microbiome composition and function, we suggest assaying the impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.


Assuntos
Microbioma Gastrointestinal , Fagos de Salmonella/genética , Adulto , Antibacterianos/farmacologia , Fezes , Humanos , Microbiota , Proteômica , RNA Ribossômico 16S/genética , Infecções por Salmonella
13.
Anal Chem ; 93(17): 6594-6598, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33885279

RESUMO

Lysine acylations are important post-translational modifications that are present in both eukaryotes and prokaryotes and regulate diverse cellular functions. Our knowledge of the microbiome lysine acylation remains limited due to the lack of efficient analytical and bioinformatics methods for complex microbial communities. Here, we show that the serial enrichment using motif antibodies successfully captures peptides containing lysine acetylation, propionylation, and succinylation from human gut microbiome samples. A new bioinformatic workflow consisting of an unrestricted database search confidently identified >60,000 acetylated, and ∼20,000 propionylated and succinylated gut microbial peptides. The characterization of these identified modification-specific metaproteomes, i.e., meta-PTMomes, demonstrates that lysine acylations are differentially distributed in microbial species with different metabolic capabilities. This study provides an analytical framework for the study of lysine acylations in the microbiome, which enables functional microbiome studies at the post-translational level.


Assuntos
Microbioma Gastrointestinal , Acetilação , Acilação , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
14.
Sci Total Environ ; 770: 145319, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33508669

RESUMO

Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.


Assuntos
COVID-19 , Cidades , Hospitalização , Humanos , RNA Viral , Estudos Retrospectivos , SARS-CoV-2 , Águas Residuárias
15.
Water Res ; 188: 116560, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137526

RESUMO

In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.


Assuntos
Betacoronavirus , COVID-19 , Infecções por Coronavirus , Pneumonia Viral , Infecções por Coronavirus/epidemiologia , Humanos , Incidência , Pandemias , Pneumonia Viral/epidemiologia , Prevalência , RNA Ribossômico 16S , Características de Residência , SARS-CoV-2 , Águas Residuárias
16.
Comput Struct Biotechnol J ; 18: 3833-3842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335682

RESUMO

Resistant starches (RS) are dietary compounds processed by the gut microbiota into metabolites, such as butyrate, that are beneficial to the host. The production of butyrate by the microbiome appears to be affected by the plant source and type of RS as well as the individual's microbiota. In this study, we used in vitro culture and metaproteomic methods to explore individual microbiome's functional responses to RS2 (enzymatically-resistant starch), RS3 (retrograded starch) and RS4 (chemically-modified starch). Results showed that RS2 and RS3 significantly altered the protein expressions in the individual gut microbiomes, while RS4 did not result in significant protein changes. Significantly elevated protein groups were enriched in carbohydrate metabolism and transport functions of families Eubacteriaceae, Lachnospiraceae and Ruminococcaceae. In addition, Bifidobacteriaceae was significantly increased in response to RS3. We also observed taxon-specific enrichments of starch metabolism and pentose phosphate pathways corresponding to this family. Functions related to starch utilization, ABC transporters and pyruvate metabolism pathways were consistently increased in the individual microbiomes in response to RS2 and RS3. Given that these taxon-specific responses depended on the type of carbohydrate sources, we constructed a functional ecological network to gain a system-level insight of functional organization. Our results suggest that while some microbes tend to be functionally independent, there are subsets of microbes that are functionally co-regulated by environmental changes, potentially by alterations of trophic interactions.

17.
Anal Chem ; 92(24): 15711-15718, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253538

RESUMO

The gut microbiome and its metabolic processes are dynamic systems. Surprisingly, our understanding of gut microbiome dynamics is limited. Here, we report a metaproteomic workflow that involves protein stable isotope probing (protein-SIP) and identification/quantification of partially labeled peptides. We also developed a package, which we call MetaProfiler, that corrects for false identifications and performs phylogenetic and time series analysis for the study of microbiome dynamics. From the stool sample of five mice that were fed with 15N hydrolysate from Ralstonia eutropha, we identified 12 326 nonredundant unlabeled peptides, of which 8256 of their heavy counterparts were quantified. These peptides revealed incorporation profiles over time that were different between and within taxa, as well as between and within clusters of orthologous groups (COGs). Our study helps unravel the complex dynamics of protein synthesis and bacterial dynamics in the mouse microbiome. MetaProfiler and the bioinformatic pipeline are available at https://github.com/northomics/MetaProfiler.git.


Assuntos
Proteínas de Bactérias/análise , Cupriavidus necator/química , Peptídeos/análise , Proteômica , Animais , Proteínas de Bactérias/metabolismo , Marcação por Isótopo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo
18.
Nat Commun ; 11(1): 4120, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807798

RESUMO

Lysine acetylation (Kac), an abundant post-translational modification (PTM) in prokaryotes, regulates various microbial metabolic pathways. However, no studies have examined protein Kac at the microbiome level, and it remains unknown whether Kac level is altered in patient microbiomes. Herein, we use a peptide immuno-affinity enrichment strategy coupled with mass spectrometry to characterize protein Kac in the microbiome, which successfully identifies 35,200 Kac peptides from microbial or human proteins in gut microbiome samples. We demonstrate that Kac is widely distributed in gut microbial metabolic pathways, including anaerobic fermentation to generate short-chain fatty acids. Applying to the analyses of microbiomes of patients with Crohn's disease identifies 52 host and 136 microbial protein Kac sites that are differentially abundant in disease versus controls. This microbiome-wide acetylomic approach aids in advancing functional microbiome research.


Assuntos
Doença de Crohn/metabolismo , Microbioma Gastrointestinal/fisiologia , Lisina/metabolismo , Acetilação , Voluntários Saudáveis , Humanos , Análise Multivariada , Proteômica , Espectrometria de Massas em Tandem
19.
Cell Death Dis ; 11(8): 665, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820145

RESUMO

The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients' data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.


Assuntos
Furina/metabolismo , Proteínas de Neoplasias/metabolismo , Subtilisinas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Progressão da Doença , Endossomos/metabolismo , Furina/genética , Células HEK293 , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/genética , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteômica/métodos , Subtilisinas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
J Am Soc Mass Spectrom ; 31(7): 1473-1482, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396346

RESUMO

Studying the structure and function of microbiomes is an emerging research field. Metaproteomic approaches focusing on the characterization of expressed proteins and post-translational modifications (PTMs) provide a deeper understanding of microbial communities. Previous research has highlighted the value of examining microbiome-wide protein expression in studying the roles of the microbiome in human diseases. Nevertheless, the regulation of protein functions in complex microbiomes remains underexplored. This is mainly due to the lack of efficient bioinformatics tools to identify and quantify PTMs in the microbiome. We have developed comprehensive software termed MetaLab for the data analysis of metaproteomic data sets. Here, we build an open search workflow within MetaLab for unbiased identification and quantification of unmodified peptides as well as peptides with various PTMs from microbiome samples. This bioinformatics platform provides information about proteins, PTMs, taxa, functions, and pathways of microbial communities. The performance of the workflow was evaluated using conventional proteomics, metaproteomics from mouse and human gut microbiomes, and modification-specific enriched data sets. Superior accuracy and sensitivity were obtained simultaneously by using our method compared with the traditional closed search strategy.


Assuntos
Proteínas de Bactérias , Microbioma Gastrointestinal , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software , Algoritmos , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Humanos , Camundongos , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...