Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 8: txae138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39387095

RESUMO

Rotavirus and other pathogenic microorganisms are known to cause scours, respiratory infection, and increased mortality, spread from pig to pig via contaminated equipment, insuffcient washing, and improper disinfection processes in farrowing rooms on commercial sow farms. Pig producers have adopted cleaning procedures and biosecurity policies as an attempt to ensure farrowing rooms are free of infectious organisms before the next group of sows is introduced. Adenosine triphosphate (ATP) bioluminescence has been used in other industries to provide real-time feedback on surface cleanliness through the detection of ATP from organic sources. That technology may provide producers a way of objectively characterizing a farrowing room's suitability for a new group of sows to be moved into the farrowing room. Three ATP luminometers (Charm Sciences novaLUM II-X, 3M Clean Trace, and Neogen AccuPoint) were used to estimate relationships between ATP bioluminescence relative light units (RLU) and coliform plate counts (CPC). Five farrowing crate locations and the room entryway floor were swabbed to determine locations within a farrowing crate that can accurately estimate room cleanliness. Coliform plate counts were strongly correlated with Charm novaLUM II-X RLU (r = 0.70, P < 0.01). The Clean-Trace CPCs and RLU (r = 0.48, P < 0.01) were moderately correlated. There was a weak correlation between CPCs and AccuPoint RLU (r = 0.32, P < 0.01). The greatest area of surface contamination was the entryway floor and the sow feeder. Because CPCs and luminometer RLU were correlated, statistical process control charts were developed to provide cleanliness thresholds based on RLU values. Based on an adjusted 3σ from the mean RLU critical limit, 7.7% of crates for the Charm novaLUM II-X, 10.6% of crates for the 3M Clean Trace, and 0% of crates for the Neogen AccuPoint would have failed the critical limit for the sow feeder cleanliness thresholds. Using a similar approach, 11.4% of crates for the Charm novaLUM II-X, 10.5% of crates for the 3M Clean Trace, and 15.2% of crates for the Neogen AccuPoint would have failed the critical limit for the crate sorting bar cleanliness thresholds. These data suggest that ATP bioluminescence may be a reliable method to monitor cleaning effectiveness in farrowing rooms on commercial sow farms. Bioluminescence is a monitoring tool that should be used in conjunction with periodic microbial validation to monitor procedures for cleaning and disinfection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA