Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 15(2): 2247053, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615336

RESUMO

This study is to investigate whether dietary fiber intake prevents vascular and renal damage in a genetic mouse model of systemic lupus erythematosus (SLE), and the contribution of gut microbiota in the protective effects. Female NZBWF1 (SLE) mice were treated with resistant-starch (RS) or inulin-type fructans (ITF). In addition, inoculation of fecal microbiota from these experimental groups to recipient normotensive female C57Bl/6J germ-free (GF) mice was performed. Both fiber treatments, especially RS, prevented the development of hypertension, renal injury, improved the aortic relaxation induced by acetylcholine, and the vascular oxidative stress. RS and ITF treatments increased the proportion of acetate- and butyrate-producing bacteria, respectively, improved colonic inflammation and integrity, endotoxemia, and decreased helper T (Th)17 proportion in mesenteric lymph nodes (MLNs), blood, and aorta in SLE mice. However, disease activity (splenomegaly and anti-ds-DNA) was unaffected by both fibers. T cell priming and Th17 differentiation in MLNs and increased Th17 infiltration was linked to aortic endothelial dysfunction and hypertension after inoculation of fecal microbiota from SLE mice to GF mice, without changes in proteinuria and autoimmunity. All these effects were lower in GF mice after fecal inoculation from fiber-treated SLE mice. In conclusion, these findings support that fiber consumption prevented the development of hypertension by rebalancing of dysfunctional gut-immune system-vascular wall axis in SLE.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Lúpus Eritematoso Sistêmico , Microbiota , Feminino , Animais , Camundongos , Fibras na Dieta , Amido Resistente , Lúpus Eritematoso Sistêmico/complicações
2.
Nutrients ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959800

RESUMO

Anorexia nervosa (AN) is a mental disorder characterized by an intense fear of weight gain that affects mainly young women. It courses with a negative body image leading to altered eating behaviors that have devastating physical, metabolic, and psychological consequences for the patients. Although its origin is postulated to be multifactorial, the etiology of AN remains unknown, and this increases the likelihood of chronification and relapsing. Thus, expanding the available knowledge on the pathophysiology of AN is of enormous interest. Metabolomics is proposed as a powerful tool for the elucidation of disease mechanisms and to provide new insights into the diagnosis, treatment, and prognosis of AN. A review of the literature related to studies of AN patients by employing metabolomic strategies to characterize the main alterations associated with the metabolic phenotype of AN during the last 10 years is described. The most common metabolic alterations are derived from chronic starvation, including amino acid, lipid, and carbohydrate disturbances. Nonetheless, recent findings have shifted the attention to gut-microbiota metabolites as possible factors contributing to AN development, progression, and maintenance. We have identified the areas of ongoing research in AN and propose further perspectives to improve our knowledge and understanding of this disease.


Assuntos
Anorexia Nervosa/metabolismo , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Metabolômica , Anorexia Nervosa/microbiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Fenótipo , Inanição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...