Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233192

RESUMO

A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/CXCR4/ACKR3 and EGF receptor (EGFR) family signaling cascades. These cell lines display a high heterogeneity in expression profiles of CXCR4/ACKR3 chemokine receptors, with a predominant intracellular localization and different proportions of cell surface CXCR4+, ACKR3+ or double-positive cell subpopulations, and display an overall modest activation of oncogenic pathways in response to exogenous CXCL12 alone. Interestingly, we find that in MDA-MB-361 (luminal B subtype, Her2-overexpressing), but not in MCF7 (luminal A) or MDA-MB-231 (triple negative) cells, CXCR4/ACKR3 and EGFR receptor families share signaling components and crosstalk mechanisms to concurrently promote ERK1/2 activation, with a key involvement of the G protein-coupled receptor kinase 2 (GRK2) signaling hub and the cytosolic tyrosine kinase Src. Our findings suggest that in certain BC subtypes, a relevant cooperation between CXCR4/ACKR3 and growth factor receptors takes place to integrate concurrent signals emanating from the tumor microenvironment and foster cancer progression.


Assuntos
Neoplasias da Mama , Receptores CXCR4 , Receptores CXCR , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quimiocina CXCL12/metabolismo , Receptores ErbB/metabolismo , Feminino , Humanos , Proteínas Tirosina Quinases/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Metabolism ; 129: 155141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074314

RESUMO

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Assuntos
Kisspeptinas , Desnutrição , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrição/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia
3.
Cells ; 12(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36611817

RESUMO

The relevance of the family of G protein-coupled receptor kinases (GRKs) is based on its key participation in the regulation and intracellular dynamics of the largest family of membrane receptors, namely G protein-coupled receptors (GPCRs) [...].


Assuntos
Quinases de Receptores Acoplados a Proteína G , Receptores Acoplados a Proteínas G
4.
Nat Commun ; 12(1): 4540, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315875

RESUMO

The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.


Assuntos
Autofagia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Células CHO , Cricetulus , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Células HEK293 , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Modelos Biológicos , Fenótipo , Ligação Proteica , Domínios Proteicos , Ratos Wistar , Proteína Regulatória Associada a mTOR/metabolismo , Proteína Sequestossoma-1/metabolismo
5.
Cells ; 10(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803070

RESUMO

Cardiovascular disease (CVD) risk shows a clear sexual dimorphism with age, with a lower incidence in young women compared to age-matched men. However, this protection is lost after menopause. We demonstrate that sex-biased sensitivity to the development of CVD with age runs in parallel with changes in G protein-coupled receptor kinase 2 (GRK2) protein levels in the murine heart and that mitochondrial fusion markers, related to mitochondrial functionality and cardiac health, inversely correlate with GRK2. Young female mice display lower amounts of cardiac GRK2 protein compared to age-matched males, whereas GRK2 is upregulated with age specifically in female hearts. Such an increase in GRK2 seems to be specific to the cardiac muscle since a different pattern is found in the skeletal muscles of aging females. Changes in the cardiac GRK2 protein do not seem to rely on transcriptional modulation since adrbk1 mRNA does not change with age and no differences are found between sexes. Global changes in proteasomal or autophagic machinery (known regulators of GRK2 dosage) do not seem to correlate with the observed GRK2 dynamics. Interestingly, cardiac GRK2 upregulation in aging females is recapitulated by ovariectomy and can be partially reversed by estrogen supplementation, while this does not occur in the skeletal muscle. Our data indicate an unforeseen role for ovarian hormones in the regulation of GRK2 protein levels in the cardiac muscle which correlates with the sex-dependent dynamics of CVD risk, and might have interesting therapeutic applications, particularly for post-menopausal women.


Assuntos
Envelhecimento/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Caracteres Sexuais , Animais , Autofagia/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo
6.
Cells ; 10(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806062

RESUMO

The timing of centrosome separation and the distance moved apart influence the formation of the bipolar spindle, affecting chromosome stability. Epidermal growth factor receptor (EGFR) signaling induces early centrosome separation through downstream G protein-coupled receptor kinase GRK2, which phosphorylates the Hippo pathway component MST2 (Mammalian STE20-like protein kinase 2), in turn allowing NIMA kinase Nek2A activation for centrosomal linker disassembly. However, the mechanisms that counterbalance centrosome disjunction and separation remain poorly understood. We unveil that timely degradation of GRK2 by the E3 ligase Mdm2 limits centrosome separation in the G2. Both knockout expression and catalytic inhibition of Mdm2 result in GRK2 accumulation and enhanced centrosome separation before mitosis onset. Phosphorylation of GRK2 on residue S670 enables a complex pattern of non-K48-linked polyubiquitin chains assembled by Mdm2, which correlate with kinase protein degradation. Remarkably, GRK2-S670A protein fails to phosphorylate MST2 despite overcoming Mdm2-dependent degradation, which results in defective centrosome separation, shorter spindles, and abnormal chromosome congression. Conversely, extra levels of wild-type kinase in the G2 cause increased inter-centrosome distances with longer spindles, also converging in congression issues. Our findings show that the signals enabling activity of the GRK2/MST2/Nek2A axis for separation also switches on Mdm2 degradation of GRK2 to ensure accurate centrosome dynamics and proper mitotic spindle functionality.


Assuntos
Centrossomo/metabolismo , Segregação de Cromossomos , Regulação para Baixo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Fase G2 , Células HEK293 , Células HeLa , Humanos , Camundongos Knockout , Fosforilação , Fosfosserina/metabolismo , Proteólise , Fuso Acromático/metabolismo , Ubiquitinação
7.
BMC Biol ; 19(1): 40, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658023

RESUMO

BACKGROUND: Insulin secretion from the pancreatic ß-cell is finely modulated by different signals to allow an adequate control of glucose homeostasis. Incretin hormones such as glucagon-like peptide-1 (GLP-1) act as key physiological potentiators of insulin release through binding to the G protein-coupled receptor GLP-1R. Another key regulator of insulin signaling is the Ser/Thr kinase G protein-coupled receptor kinase 2 (GRK2). However, whether GRK2 affects insulin secretion or if GRK2 can control incretin actions in vivo remains to be analyzed. RESULTS: Using GRK2 hemizygous mice, isolated pancreatic islets, and model ß-cell lines, we have uncovered a relevant physiological role for GRK2 as a regulator of incretin-mediated insulin secretion in vivo. Feeding, oral glucose gavage, or administration of GLP-1R agonists in animals with reduced GRK2 levels (GRK2+/- mice) resulted in enhanced early phase insulin release without affecting late phase secretion. In contrast, intraperitoneal glucose-induced insulin release was not affected. This effect was recapitulated in isolated islets and correlated with the increased size or priming efficacy of the readily releasable pool (RRP) of insulin granules that was observed in GRK2+/- mice. Using nanoBRET in ß-cell lines, we found that stimulation of GLP-1R promoted GRK2 association to this receptor and that GRK2 protein and kinase activity were required for subsequent ß-arrestin recruitment. CONCLUSIONS: Overall, our data suggest that GRK2 is an important negative modulator of GLP-1R-mediated insulin secretion and that GRK2-interfering strategies may favor ß-cell insulin secretion specifically during the early phase, an effect that may carry interesting therapeutic applications.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/genética , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Secreção de Insulina/genética , Animais , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos
8.
Annu Rev Pharmacol Toxicol ; 61: 541-563, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32956018

RESUMO

Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.


Assuntos
Neoplasias , Quimiocina CXCL12 , Humanos , Ligantes , Receptores CXCR4 , Transdução de Sinais , Microambiente Tumoral
9.
Antioxidants (Basel) ; 9(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020373

RESUMO

Perivascular adipose tissue (PVAT) is increasingly being regarded as an important endocrine organ that directly impacts vessel function, structure, and contractility in obesity-associated diseases. We uncover here a role for myeloid G protein-coupled receptor kinase 2 (GRK2) in the modulation of PVAT-dependent vasodilation responses. GRK2 expression positively correlates with myeloid- (CD68) and lymphoid-specific (CD3, CD4, and CD8) markers and with leptin in PVAT from patients with abdominal aortic aneurysms. Using mice hemizygous for GRK2 in the myeloid lineage (LysM-GRK2+/-), we found that GRK2 deficiency in myeloid cells allows animals to preserve the endothelium-dependent acetylcholine or insulin-induced relaxation, which is otherwise impaired by PVAT, in arteries of animals fed a high fat diet (HFD). Downregulation of GRK2 in myeloid cells attenuates HFD-dependent infiltration of macrophages and T lymphocytes in PVAT, as well as the induction of tumor necrosis factor-α (TNFα) and NADPH oxidase (Nox)1 expression, whereas blocking TNFα or Nox pathways by pharmacological means can rescue the impaired vasodilator responses to insulin in arteries with PVAT from HFD-fed animals. Our results suggest that myeloid GRK2 could be a potential therapeutic target in the development of endothelial dysfunction induced by PVAT in the context of obesity.

10.
ACS Pharmacol Transl Sci ; 3(4): 627-634, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33073183

RESUMO

The CXCL12 chemokine receptor CXCR4 belongs to the GPCR superfamily and is often overexpressed in cancer, being involved in tumor progression and metastasis. How CXCR4 signaling integrates with other relevant oncogenic transduction pathways and the role of GPCR regulatory mechanisms in such contexts are not well-understood. Recent data indicate concurrent upregulation in certain tumors of CXCR4, EGF receptor (EGFR), and G protein-coupled receptor kinase 2 (GRK2), a signaling node functionally linked to both receptor types. We have investigated in a model system the effect of the EGFR and GRK2 status on CXCL12/CXCR4-mediated activation of Gi, the earliest step downstream of receptor activation. We find that overexpressed and activated EGFR reduces CXCR4-mediated Gi1 activation and that GRK2 phosphorylation at tyrosine residues is required to exert its inhibitory actions on CXCR4-Gi stimulation, suggesting a shared path of modulation. Our data point to a role for GRK2 in the crosstalk of the CXCR4 and EGFR signal transduction pathways in pathological contexts characterized by concurrent overactivation of these proteins.

11.
Cancers (Basel) ; 12(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413989

RESUMO

Adaptation to hypoxia is a common feature in solid tumors orchestrated by oxygen-dependent and independent upregulation of the hypoxia-inducible factor-1α (HIF-1α). We unveiled that G protein-coupled receptor kinase (GRK2), known to be overexpressed in certain tumors, fosters this hypoxic pathway via phosphorylation of the mRNA-binding protein HuR, a central HIF-1α modulator. GRK2-mediated HuR phosphorylation increases the total levels and cytoplasmic shuttling of HuR in response to hypoxia, and GRK2-phosphodefective HuR mutants show defective cytosolic accumulation and lower binding to HIF-1α mRNA in hypoxic Hela cells. Interestingly, enhanced GRK2 and HuR expression correlate in luminal breast cancer patients. GRK2 also promotes the HuR/HIF-1α axis and VEGF-C accumulation in normoxic MCF7 breast luminal cancer cells and is required for the induction of HuR/HIF1-α in response to adrenergic stress. Our results point to a relevant role of the GRK2/HuR/HIF-1α module in the adaptation of malignant cells to tumor microenvironment-related stresses.

12.
FASEB J ; 34(1): 399-409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914606

RESUMO

The liver plays a key role during fasting to maintain energy homeostasis and euglycemia via metabolic processes mainly orchestrated by the insulin/glucagon ratio. We report here that fasting or calorie restriction protocols in C57BL6 mice promote a marked decrease in the hepatic protein levels of G protein-coupled receptor kinase 2 (GRK2), an important negative modulator of both G protein-coupled receptors (GPCRs) and insulin signaling. Such downregulation of GRK2 levels is liver-specific and can be rapidly reversed by refeeding. We find that autophagy, and not the proteasome, represents the main mechanism implicated in fasting-induced GRK2 degradation in the liver in vivo. Reducing GRK2 levels in murine primary hepatocytes facilitates glucagon-induced glucose production and enhances the expression of the key gluconeogenic enzyme Pck1. Conversely, preventing full downregulation of hepatic GRK2 during fasting using adenovirus-driven overexpression of this kinase in the liver leads to glycogen accumulation, decreased glycemia, and hampered glucagon-induced gluconeogenesis, thus preventing a proper and complete adaptation to nutrient deprivation. Overall, our data indicate that physiological fasting-induced downregulation of GRK2 in the liver is key for allowing complete glucagon-mediated responses and efficient metabolic adaptation to fasting in vivo.


Assuntos
Adaptação Biológica/efeitos dos fármacos , Autofagia , Jejum , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Glucagon/farmacologia , Fígado/metabolismo , Animais , Quinase 2 de Receptor Acoplado a Proteína G/genética , Fármacos Gastrointestinais/farmacologia , Homeostase , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Cell Mol Life Sci ; 77(23): 4957-4976, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31927610

RESUMO

Macrophages are key effector cells in obesity-associated inflammation. G protein-coupled receptor kinase 2 (GRK2) is highly expressed in different immune cell types. Using LysM-GRK2+/- mice, we uncover that a reduction of GRK2 levels in myeloid cells prevents the development of glucose intolerance and hyperglycemia after a high fat diet (HFD) through modulation of the macrophage pro-inflammatory profile. Low levels of myeloid GRK2 confer protection against hepatic insulin resistance, steatosis and inflammation. In adipose tissue, pro-inflammatory cytokines are reduced and insulin signaling is preserved. Macrophages from LysM-GRK2+/- mice secrete less pro-inflammatory cytokines when stimulated with lipopolysaccharide (LPS) and their conditioned media has a reduced pathological influence in cultured adipocytes or naïve bone marrow-derived macrophages. Our data indicate that reducing GRK2 levels in myeloid cells, by attenuating pro-inflammatory features of macrophages, has a relevant impact in adipose-liver crosstalk, thus preventing high fat diet-induced metabolic alterations.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Fígado/metabolismo , Células Mieloides/metabolismo , Obesidade/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Branco/patologia , Animais , Meios de Cultivo Condicionados/farmacologia , Citoproteção/efeitos dos fármacos , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Hipertrofia , Inflamação/patologia , Insulina/metabolismo , Resistência à Insulina , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/efeitos dos fármacos , Obesidade/complicações , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
14.
Int J Cancer ; 147(1): 218-229, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31850518

RESUMO

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal lining of the upper aerodigestive tract and display few treatment options in advanced stages. Despite increased knowledge of HNSCC molecular biology, the identification of new players involved in triggering HNSCC recurrence and metastatic disease is needed. We uncover that G-protein-coupled receptor kinase-2 (GRK2) expression is reduced in undifferentiated, high-grade human HNSCC tumors, whereas its silencing in model human HNSCC cells is sufficient to trigger epithelial-to-mesenchymal transition (EMT) phenotypic features, an EMT-like transcriptional program and enhanced lymph node colonization from orthotopic tongue tumors in mice. Conversely, enhancing GRK2 expression counteracts mesenchymal cells traits by mechanisms involving phosphorylation and decreased functionality of the key EMT inducer Snail1. Our results suggest that GRK2 safeguards the epithelial phenotype, whereas its downregulation contributes to the activation of EMT programs in HNSCC.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Quinase 2 de Receptor Acoplado a Proteína G/biossíntese , Quinase 2 de Receptor Acoplado a Proteína G/genética , Neoplasias de Cabeça e Pescoço/genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fosforilação , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
15.
Transl Psychiatry ; 9(1): 306, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740729

RESUMO

A better understanding of the molecular mechanisms that participate in the development and clinical manifestations of schizophrenia can lead to improve our ability to diagnose and treat this disease. Previous data strongly associated the levels of deregulated ADAMTS2 expression in peripheral blood mononuclear cells (PBMCs) from patients at first episode of psychosis (up) as well as in clinical responders to treatment with antipsychotic drugs (down). In this current work, we performed an independent validation of such data and studied the mechanisms implicated in the control of ADAMTS2 gene expression. Using a new cohort of drug-naïve schizophrenia patients with clinical follow-up, we confirmed that the expression of ADAMTS2 was highly upregulated in PBMCs at the onset (drug-naïve patients) and downregulated, in clinical responders, after treatment with antipsychotics. Mechanistically, ADAMTS2 expression was activated by dopaminergic signalling (D1-class receptors) and downstream by cAMP/CREB and mitogen-activated protein kinase (MAPK)/ERK signalling. Incubation with antipsychotic drugs and selective PKA and MEK inhibitors abrogated D1-mediated activation of ADAMTS2 in neuronal-like cells. Thus, D1 receptors signalling towards CREB activation might participate in the onset and clinical responses to therapy in schizophrenia patients, by controlling ADAMTS2 expression and activity. The unbiased investigation of molecular mechanisms triggered by antipsychotic drugs may provide a new landscape of novel targets potentially associated with clinical efficacy.


Assuntos
Proteínas ADAMTS/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Esquizofrenia/fisiopatologia , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Proteínas ADAMTS/genética , Animais , Antipsicóticos/farmacologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Fosforilação , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais
16.
Cells ; 8(11)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752326

RESUMO

A differential sex-related sensitivity has been reported in obesity and insulin resistance-related cardio-metabolic diseases, with a lower incidence of these pathologies being observed in young females when compared to age-matched males. However, such relative protection is lost with age. The mechanisms underlying such sex and age-related changes in the susceptibility to diabetes and obesity are not fully understood. Herein, we report that the relative protection that is displayed by young female mice, as compared to male littermates, against some of the metabolic alterations that are induced by feeding a high fat diet (HFD), correlates with a lower upregulation of the protein levels of G protein-coupled receptor kinase (GRK2), which is a key regulator of both insulin and G protein-coupled receptor signaling, in the liver and adipose tissue. Interestingly, when the HFD is initiated in middle-aged (32 weeks) female mice, these animals are no longer protected and display a more overt obese and insulin-resistant phenotype, along with a more evident increase in the GRK2 protein levels in metabolically relevant tissues in such conditions. Our data suggest that GRK2 dosage might be involved in the sex and age-biased sensitivity to insulin resistance-related pathologies.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Obesidade/metabolismo , Regulação para Cima , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Obesidade/induzido quimicamente , Caracteres Sexuais
17.
EBioMedicine ; 48: 605-618, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31594751

RESUMO

BACKGROUND: Identification of signaling pathways altered at early stages after cardiac ischemia/reperfusion (I/R) is crucial to develop timely therapies aimed at reducing I/R injury. The expression of G protein-coupled receptor kinase 2 (GRK2), a key signaling hub, is up-regulated in the long-term in patients and in experimental models of heart failure. However, whether GRK2 levels change at early time points following myocardial I/R and its functional impact during this period remain to be established. METHODS: We have investigated the temporal changes of GRK2 expression and their potential relationships with the cardioprotective AKT pathway in isolated rat hearts and porcine preclinical models of I/R. FINDINGS: Contrary to the maladaptive up-regulation of GRK2 reported at later times after myocardial infarction, successive GRK2 phosphorylation at specific sites during ischemia and early reperfusion elicits GRK2 degradation by the proteasome and calpains, respectively, thus keeping GRK2 levels low during early I/R in rat hearts. Concurrently, I/R promotes decay of the prolyl-isomerase Pin1, a positive regulator of AKT stability, and a marked loss of total AKT protein, resulting in an overall decreased activity of this pro-survival pathway. A similar pattern of concomitant down-modulation of GRK2/AKT/Pin1 protein levels in early I/R was observed in pig hearts. Calpain and proteasome inhibition prevents GRK2/Pin1/AKT degradation, restores bulk AKT pathway activity and attenuates myocardial I/R injury in isolated rat hearts. INTERPRETATION: Preventing transient degradation of GRK2 and AKT during early I/R might improve the potential of endogenous cardioprotection mechanisms and of conditioning strategies.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores , Células Cultivadas , Modelos Animais de Doenças , Masculino , Modelos Biológicos , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Oxirredução , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ratos , Suínos
18.
Cell Mol Life Sci ; 76(22): 4423-4446, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31432234

RESUMO

Accumulating evidence indicates that G protein-coupled receptor kinase 2 (GRK2) is a versatile protein that acts as a signaling hub by modulating G protein-coupled receptor (GPCR) signaling and also via phosphorylation or scaffolding interactions with an extensive number of non-GPCR cellular partners. GRK2 multifunctionality arises from its multidomain structure and from complex mechanisms of regulation of its expression levels, activity, and localization within the cell, what allows the precise spatio-temporal shaping of GRK2 targets. A better understanding of the GRK2 interactome and its modulation mechanisms is helping to identify the GRK2-interacting proteins and its substrates involved in the participation of this kinase in different cellular processes and pathophysiological contexts.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Fosforilação/fisiologia
19.
Rev Esp Cardiol (Engl Ed) ; 72(10): 853-862, 2019 Oct.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31178382

RESUMO

Beta-blockers are widely used molecules that are able to antagonize ß-adrenergic receptors (ARs), which belong to the G protein-coupled receptor family and receive their stimulus from endogenous catecholamines. Upon ß-AR stimulation, numerous intracellular cascades are activated, ultimately leading to cardiac contraction or vascular dilation, depending on the relevant subtype and their location. Three subtypes have been described that are differentially expressed in the body (ß1-, ß2- and ß3-ARs), ß1 being the most abundant subtype in the heart. Since their discovery, ß-ARs have become an important target to fight cardiovascular disease. In fact, since their discovery by James Black in the late 1950s, ß-blockers have revolutionized the field of cardiovascular therapies. To date, 3 generations of drugs have been released: nonselective ß-blockers, cardioselective ß-blockers (selective ß1-antagonists), and a third generation of these drugs able to block ß1 together with extra vasodilation activity (also called vasodilating ß-blockers) either by blocking α1- or by activating ß3-AR. More than 50 years after propranolol was introduced to the market due to its ability to reduce heart rate and consequently myocardial oxygen demand in the event of an angina attack, ß-blockers are still widely used in clinics.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Humanos , Receptores Adrenérgicos beta/efeitos dos fármacos
20.
Front Pharmacol ; 10: 112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837878

RESUMO

G protein-coupled receptor kinase 2 (GRK2) is a central signaling node involved in the modulation of many G protein-coupled receptors (GPCRs) and also displaying regulatory functions in other cell signaling routes. GRK2 levels and activity have been reported to be enhanced in patients or in preclinical models of several relevant pathological situations, such as heart failure, cardiac hypertrophy, hypertension, obesity and insulin resistance conditions, or non-alcoholic fatty liver disease (NAFLD), and to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Therefore, targeting GRK2 by different strategies emerges as a potentially relevant approach to treat cardiovascular disease, obesity, type 2 diabetes, or NAFLD, pathological conditions which are frequently interconnected and present as co-morbidities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...