Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685503

RESUMO

The HPSE gene encodes heparanase (HPSE), a key player in cancer, inflammation, and autoimmunity. We have previously identified a strong HPSE gene enhancer involved in self-regulation of heparanase by negative feedback exerted in a functional rs4693608 single-nucleotide polymorphism (SNP) dependent manner. In the present study, we analyzed the HPSE gene insulator region, located in intron 9 and containing rs4426765, rs28649799, and rs4364254 SNPs. Our results indicate that this region exhibits HPSE regulatory activity. SNP substitutions lead to modulation of a unique DNA-protein complex that affects insulator activity. Analysis of interactions between enhancer and insulator SNPs revealed that rs4693608 has a major effect on HPSE expression and the risk of post-transplantation acute graft versus host disease (GVHD). The C alleles of insulator SNPs rs4364254 and rs4426765 modify the activity of the HPSE enhancer, resulting in altered HPSE expression and increased risk of acute GVHD. Moreover, rs4426765 correlated with HPSE expression in activated mononuclear cells, as well as with CD3 levels and lymphocyte counts following G-CSF mobilization. rs4363084 and rs28649799 were found to be associated with CD34+ levels. Our study provides new insight into the mechanism of HPSE gene regulation and its impact on normal and pathological processes in the hematopoietic system.


Assuntos
Regulação da Expressão Gênica/genética , Glucuronidase/metabolismo , Doença Enxerto-Hospedeiro/genética , Neoplasias/genética , Células-Tronco/citologia , Alelos , Regulação da Expressão Gênica/fisiologia , Frequência do Gene/genética , Genótipo , Mobilização de Células-Tronco Hematopoéticas/métodos , Humanos
2.
Oncogenesis ; 7(6): 51, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29955035

RESUMO

Heparanase is an endo-ß-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate (HS) proteoglycans and releases HS-bound cytokines, chemokines, and bioactive growth-promoting factors. Heparanase plays an important role in the nucleus as part of an active chromatin complex. Our previous studies revealed that rs4693608 correlates with heparanase levels and increased risk of acute and extensive chronic graft vs. host disease (GVHD). Discrepancy between recipient and donor in this SNP significantly affected the risk of acute GVHD. In the present study, we analyzed the HPSE gene region, including rs4693608, and demonstrated that this region exhibits SNPs-dependent enhancer activity. Analysis of nuclear proteins from normal leukocytes revealed their binding to DNA probe of both alleles with higher affinity to allele G. All malignant cell lines and leukemia samples disclosed a shift of the main bands in comparison to normal leukocytes. At least five additional shifted bands were bound to allele A while allele G probe was bound to only one main DNA/protein complex. Additional SNPs rs4693083, rs4693084, and rs4693609 were found in strong linkage disequilibrium (LD) with rs11099592 (exon 7). Only rs4693084 affected protein binding to DNA in cell lines and leukemia samples. As a result of the short distance between rs4693608 and rs4693084, both SNPs may be included in a common DNA/protein complex. DNA pull-down assay revealed that heparanase is involved in self-regulation by negative feedback in rs4693608-dependent manner. During carcinogenesis, heparanase self-regulation is discontinued and the helicase-like transcription factor begins to regulate this enhancer region. Altogether, our study elucidates conceivable mechanism(s) by which rs4693608 SNP regulates HPSE gene expression and the associated disease outcome.

3.
J Leukoc Biol ; 95(4): 677-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24319286

RESUMO

Heparanase is an endo-ß-glucuronidase that specifically cleaves the saccharide chains of HSPGs, important structural and functional components of the ECM. Cleavage of HS leads to loss of the structural integrity of the ECM and release of HS-bound cytokines, chemokines, and bioactive angiogenic- and growth-promoting factors. Our previous study revealed a highly significant correlation of HPSE gene SNPs rs4693608 and rs4364254 and their combination with the risk of developing GVHD. We now demonstrate that HPSE is up-regulated in response to pretransplantation conditioning, followed by a gradual decrease thereafter. Expression of heparanase correlated with the rs4693608 HPSE SNP before and after conditioning. Moreover, a positive correlation was found between recipient and donor rs4693608 SNP discrepancy and the time of neutrophil and platelet recovery. Similarly, the discrepancy in rs4693608 HPSE SNP between recipients and donors was found to be a more significant factor for the risk of aGVHD than patient genotype. The rs4693608 SNP also affected HPSE gene expression in LPS-treated MNCs from PB and CB. Possessors of the AA genotype exhibited up-regulation of heparanase with a high ratio in the LPS-treated MNCs, whereas individuals with genotype GG showed down-regulation or no effect on HPSE gene expression. HPSE up-regulation was mediated by TLR4. The study emphasizes the importance of rs4693608 SNP for HPSE gene expression in activated MNCs, indicating a role in allogeneic stem cell transplantation, including postconditioning, engraftment, and GVHD.


Assuntos
Glucuronidase/genética , Transplante de Células-Tronco Hematopoéticas , Lipopolissacarídeos/farmacologia , Polimorfismo de Nucleotídeo Único , Condicionamento Pré-Transplante , Adolescente , Adulto , Idoso , Feminino , Genótipo , Glucuronidase/fisiologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/genética , Humanos , Leucócitos Mononucleares/enzimologia , Masculino , Pessoa de Meia-Idade , Receptor 4 Toll-Like/fisiologia , Transplante Homólogo
4.
J Leukoc Biol ; 86(2): 445-55, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19406828

RESUMO

Heparanase is an endo-beta-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate proteoglycans. Heparanase plays important roles in processes such as angiogenesis, tumor metastasis, tissue repair and remodeling, inflammation and autoimmunity. Genetic variations of the heparanase gene (HPSE) have been associated with heparanase transcription level. The present study was undertaken to identify haplotype or single nucleotide polymorphisms (SNPs) genotype combinations that correlate with heparanase expression both at the mRNA and protein levels. For this purpose, 11 HPSE gene SNPs were genotyped among 108 healthy individuals. Five out of the eleven polymorphisms revealed an association between the SNPs and heparanase expression. SNP rs4693608 exhibited a strong evidence of association. Analysis of haplotypes distribution revealed that the combination of two SNPs (rs4693608 and rs4364254) disclosed the most significant result. This approach allowed segregation of possible genotype combinations to three groups that correlate with low (LR: GG-CC, GG-CT, GG-TT, GA-CC), intermediate (MR: GA-CT, GA-TT) and high (HR: AA-TT, AA-CT) heparanase expression. Unexpectedly, LR genotype combinations were associated with low mRNA expressions level and high heparanase concentration in plasma, while HR genotype combinations were associated with high expression of mRNA and low plasma protein level. Because the main site of activity of secreted active heparanase is the extracellular matrix and cell surface, the origin and functional significance of plasma heparanase remain to be investigated. The current study indicates that rs4693608 and rs4364254 SNPs are involved in the regulation of heparanase expression and provides the basis for further studies on the association between HPSE gene SNPs and disease outcome.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Glucuronidase/sangue , Glucuronidase/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Análise Mutacional de DNA , Regulação para Baixo/genética , Matriz Extracelular/metabolismo , Feminino , Frequência do Gene/genética , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Adulto Jovem
5.
Cell Tissue Bank ; 4(1): 29-35, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15256867

RESUMO

The first successful transplantation of umbilical-cord blood (CB) was performed in 1988 to treat a boy with Fanconi's anemia, using CB from his HLA full-matched sister. A few years later, CB transplantation (CBT) was also performed in an adult recipient, however major obstacles still prevent a wider application of CBT in this age group. The principle limiting-factor is the low numbers of nucleated (NC) and CD34+ cells available for transplantation compared to a typical bone marrow (BM)/peripheral blood (PB) allograft, resulting in a lower engraftment success as well as delayed hematopoietic recovery with its characteristic complications, including infections and transplant related mortality (TRM). Other problems include uncertainty regarding potency and efficacy of graft versus leukemia (GvL)/tumor effects in this kind of transplant, considering the reduced graft versus host disease (GvHD) manifestations and immunologic prematurity. These subjects are reviewed with orientation to technical methods directed to improve CB grafts and graft engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...