Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 227: 53-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593849

RESUMO

The parasitic protozoon Trichomonas vaginalis is the pathogen of trichomoniasis, the most common non-viral, sexually transmitted disease in humans. Inositol phosphates function in the pathomechanisms of a number of human pathogenic protozoa. Recent findings point to a role of inositol phosphates in T. vaginalis' adaption to oxygen exposure during change of host. Six inositol phosphate kinase genes (tvip6k1-4, tvipk1-2) were identified in the T. vaginalis genome by us all coding for proteins containing canonical sequence motifs of the major group of animal inositol phosphate kinases (PDKG, SSLL, DFG/A). When characterizing the purified protein product of tvip6k1, we discovered that the major activity of the highly active enzyme (˜2 µmol/min/mg) is a conversion of InsP6 to 6PP-InsP5 and not 5PP-InsP5 as by animal isoforms. Thus TvIP6K1 is a novel IP6-6K. The enzyme also converts Ins(1,3,4,5,6)P5 to products pyrophosphorylated both at 6- and 4-phosphate still having a free 5-hydroxyl. In addition, the enzyme has a minor selectivity to phosphorylate the 3-OH in Ins(1,2,4,5)P4 and Ins(1,2,4,5,6)P5. To present knowledge this novel enzyme is restricted to protozoa. Since its structure is predicted to be distinctly different from animal IP6K (IP6-5K) forms, TvIP6-6K may become a promising target to search for novel trichomoniasis specific drugs.


Assuntos
Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/enzimologia , Sequência de Aminoácidos , Humanos , Fosfatos de Inositol/metabolismo , Cinética , Família Multigênica , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Trichomonas vaginalis/química , Trichomonas vaginalis/genética
2.
Biochem Pharmacol ; 161: 14-25, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557554

RESUMO

The inositol phosphates, InsP5 and InsP6, have recently been identified as binding partners of fibrinogen, which is critically involved in hemostasis by crosslinking activated platelets at sites of vascular injury. Here, we investigated the putative physiological role of this interaction and found that platelets increase their InsP6 concentration upon stimulation with the PLC-activating agonists thrombin, collagen I and ADP and present a fraction of it at the outer plasma membrane. Cone and plate analysis in whole blood revealed that InsP6 specifically increases platelet aggregate size. This effect is fibrinogen-dependent, since it is inhibited by an antibody that blocks fibrinogen binding to platelets. Furthermore, InsP6 has only an effect on aggregate size of washed platelets when fibrinogen is present, while it has no influence in presence of von Willebrand factor or collagen. By employing blind docking studies we predicted the binding site for InsP6 at the bundle between the γ and ß helical subunit of fibrinogen. Since InsP6 is unable to directly activate platelets and it did not exhibit an effect on thrombin formation or fibrin structure, our data indicate that InsP6 might be a hemostatic agent that is produced by platelets upon stimulation with PLC-activating agonists to promote platelet aggregation by supporting crosslinking of fibrinogen and activated platelets.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ácido Fítico/metabolismo , Ácido Fítico/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Plaquetas/química , Fibrinogênio/metabolismo , Humanos , Ácido Fítico/química , Agregação Plaquetária/fisiologia , Estrutura Secundária de Proteína
3.
Biochem Pharmacol ; 96(2): 143-50, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25986882

RESUMO

As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 µM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 µM or 2 µM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells.


Assuntos
Antineoplásicos/farmacologia , Inositol 1,4,5-Trifosfato/farmacologia , Neoplasias Pulmonares/patologia , Naftalimidas/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Pirazóis/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Sinalização do Cálcio , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Naftalimidas/química , Pirazóis/química
4.
Biochem J ; 462(1): 173-84, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24865181

RESUMO

InsP6 (inositol hexakisphosphate), the most abundant inositol phosphate in metazoa, is pyrophosphorylated to InsP7 [5PP-InsP5 (diphosphoinositol pentakisphosphate)] by cytosolic and nuclear IP6Ks (InsP6 kinases) and to 1PP-InsP5 by another InsP6/InsP7 kinase family. MINPP1 (multiple inositol-polyphosphate phosphatase 1), the only known InsP6 phosphatase, is localized in the ER (endoplasmic reticulum) and lysosome lumina. A mechanism of cytosolic InsP6 dephosphorylation has remained enigmatic so far. In the present study, we demonstrated that IP6Ks change their kinase activity towards InsP6 at a decreasing ATP/ADP ratio to an ADP phosphotransferase activity and dephosphorylate InsP6. Enantio-selective analysis revealed that Ins(2,3,4,5,6)P5 is the main InsP5 product of the IP6K reaction, whereas the exclusive product of MINPP1 activity is the enantiomer Ins(1,2,4,5,6)P5. Whereas lentiviral RNAi-based depletion of MINPP1 at falling cellular ATP/ADP ratios had no significant impact on Ins(2,3,4,5,6)P5 production, the use of the selective IP6K inhibitor TNP [N2-(m-trifluorobenzyl),N6-(p-nitrobenzyl)purine] abolished the production of this enatiomer in different types of cells. Furthermore, by analysis of rat tissue and human blood samples all (main and minor) dephosphorylation products of InsP6 were detected in vivo. In summary, we identified IP6Ks as novel nuclear and cytosolic InsP6- (and InsP5-) dephosphorylating enzymes whose activity is sensitively driven by a decrease in the cellular ATP/ADP ratio, thus suggesting a role for IP6Ks as cellular adenylate energy 'sensors'.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ácido Fítico/metabolismo , Animais , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ratos
5.
Biosci Rep ; 33(5)2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24050387

RESUMO

In colon enterocytes and in well-differentiated colon cancer CaCo-2 cells, InsP6 (inositol hexakisphosphate) inhibits iron uptake by forming extracellular insoluble iron/InsP6 complexes. In this study, we confirmed that CaCo-2 cells are not able to take up iron/InsP6 but, interestingly, found that the cells are able to internalize metal-free and Cr3+-bound InsP6. Thus, the inability of CaCo-2 cells to take up iron/InsP6 complexes seems to be due to the iron-bound state of InsP6. Since recently we demonstrated that the highly malignant bronchial carcinoma H1299 cells internalize and process InsP6, we examined whether these cells may be able to take up iron/InsP6 complexes. Indeed, we found that InsP6 dose-dependently increased uptake of iron and demonstrated that in the iron-bound state InsP6 is more effectively internalized than in the metal-free or Cr3+-bound state, indicating that H1299 cells preferentially take up iron/InsP6 complexes. Electron microscope and cell fraction assays indicate that after uptake H1299 cells mainly stored InsP6/iron in lysosomes as large aggregates, of which about 10% have been released to the cytosol. However, this InsP6-mediated iron transport had no significant effects on cell viability. This result together with our finding that the well-differentiated CaCo-2 cells did not, but the malignant H1299 cells preferentially took up iron/InsP6, may offer the possibility to selectively transport cytotoxic substances into tumour cells.


Assuntos
Complexos de Coordenação/metabolismo , Ferro/metabolismo , Ácido Fítico/metabolismo , Transporte Biológico , Células CACO-2 , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Cromo/metabolismo , Ferritinas/metabolismo , Humanos , Lisossomos/metabolismo , Ácido Fítico/farmacologia , Espécies Reativas de Oxigênio
6.
J Cell Sci ; 126(Pt 2): 437-44, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203802

RESUMO

Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Ribossômico/biossíntese , Sequência de Aminoácidos , Linhagem Celular Tumoral , Nucléolo Celular/enzimologia , Nucléolo Celular/metabolismo , Células HeLa , Humanos , Inositol/genética , Inositol/metabolismo , Células MCF-7 , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
7.
Biochem J ; 450(1): 115-25, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23186306

RESUMO

InsP(6) [Ins(1,2,3,4,5,6)P6; phytate] is the most abundant inositol phosphate in mammalian cells with cytosolic/nuclear concentrations of up to 50 µM. We noticed that InsP6 in culture medium at a concentration of ≤50 µM significantly stimulates H1299 tumour cell growth, whereas larger concentrations of InsP6 inhibit growth. A detailed study of the fate of 30 µM InsP6 added to H199 cells revealed a major fraction of InsP6 initially precipitates as cell-surface metal complexes, but becomes slowly re-solubilized by extracellular dephosphorylation first to InsP3 isomers and subsequently to free myo-inositol. The precipitated metal-InsP6 complex is endocytosed in a receptor-independent but intact-glycocalyx-dependent manner and appears in lysosomes, where it is immediately dephosphorylated to Ins(1,2,4,5,6)P5 and very slowly to free inositol. By RNA knockdown, we identified secreted and lysosome targeted MINPP1 (multiple inositol-polyphosphate phosphatase 1), the mammalian 3-phytase, to be essentially involved both in extracellular and in lysosomal InsP6 dephosphorylation. The results of the present study indicate that tumour cells employ this enzyme to utilize the micronutrients myo-inositol and metal-phosphate when encountering extracellular InsP6 and thus to enhance their growth potential.


Assuntos
Proliferação de Células , Monoéster Fosfórico Hidrolases/metabolismo , Ácido Fítico/metabolismo , Citosol/metabolismo , Endocitose , Endossomos/metabolismo , Cinética , Lisossomos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Células Tumorais Cultivadas
8.
Mol Biochem Parasitol ; 186(2): 134-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23123170

RESUMO

The synchronization of intraerythrocytic maturation of Plasmodium parasites is an important factor in the malaria infection process. Synchronization is mediated by inositol phosphate (InsP(x))-induced Ca(2+)-release from internal stores. To further investigate the InsP(x) metabolism in these parasites a Plasmodium protein possessing inositol phosphate kinase (IPK) activity was recombinantly expressed, purified and enzymatically characterized for the first time. Its main activity is the conversion of the Ca(2+)-releasing second messenger Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4), an important factor in chromatin remodeling and also in Ca(2+)-release. This protein possesses several additional IPK activities pointing to a potential role as inositol phosphate multikinase. Interestingly, we have also identified three putative subdomains of histone deacetylase in this protein possibly linking InsP(x)- and acetylation-mediated transcription regulation. Furthermore, we examined the inhibitory potential of >40 polyphenolic substances against its kinase activity. Because of the important role of InsP(x)-induced Ca(2+)-release in the development of Plasmodium parasites, IPKs are interesting targets for novel antimalarial approaches.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium/genética , Polifenóis/farmacologia , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
9.
Biol Chem ; 393(9): 979-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22944697

RESUMO

Diphosphoinositol phosphates are a subclass of inositol phosphates possessing one or two high energy diphosphate groups instead of phosphoester substituents of the myo-inositol. Here we describe the enzymes responsible for their synthesis and degradation and how these may be regulated. Formation of diphosphoinositol phosphates in yeast and mammals is driven by an increase of the cellular energy charge, a lack of inorganic phosphate, and in mammals by osmotic or heat stress and in some cases by receptor mediated signaling. Known cellular actions are an improvement of the cell homeostasis by a reduction of the energy charge, increased phosphate uptake, improvement of mitochondrial performance, and an increase of insulin secretion in mammals. The underlying molecular mechanisms of action are far from being clarified but an increasing body of knowledge about molecular details has highlighted their complex participation in many cellular systems and metabolic processes.


Assuntos
Difosfatos/metabolismo , Fosfatos de Inositol/biossíntese , Fosfatos de Inositol/metabolismo , Animais , Homeostase , Humanos
10.
Anal Biochem ; 428(1): 24-7, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22698891

RESUMO

Green fluorescent protein (GFP) and GFP-like proteins of different colors are important tools in cell biology. In many studies, the intracellular targeting of proteins has been determined by transiently expressing GFP fusion proteins and analyzing their intracellular localization by fluorescence microscopy. In most vectors, expression of GFP is driven by the enhancer/promoter cassette of the immediate early gene of human cytomegalovirus (hCMV). This cassette generates high levels of protein expression in most mammalian cell lines. Unfortunately, these nonphysiologically high protein levels have been repeatedly reported to artificially alter the intracellular targeting of proteins fused to GFP. To cope with this problem, we generated a multitude of attenuated GFP expression vectors by modifying the hCMV enhancer/promoter cassette. These modified vectors were transiently expressed, and the expression levels of enhanced green fluorescent protein (EGFP) alone and enhanced yellow fluorescent protein (EYFP) fused to another protein were determined by fluorescence microscopy and/or Western blotting. As shown in this study, we were able to (i) clearly reduce the expression of EGFP alone and (ii) reduce expression of an EYFP fusion protein down to the level of the endogenous protein, both in a graded manner.


Assuntos
Bioquímica/métodos , Células/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Elementos Facilitadores Genéticos , Vetores Genéticos/genética , Humanos , Proteínas Luminescentes/metabolismo , Mutagênese/genética , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética
11.
Biol Chem ; 393(3): 149-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22718630

RESUMO

Human inositol phosphate multikinase (IPMK) is a multifunctional protein in cellular signal transduction, namely, a multispecific inositol phosphate kinase, phosphatidylinositol 3-kinase, and a scaffold within the mTOR-raptor complex. To fulfill these nuclear and cytoplasmic functions, intracellular targeting of IPMK needs to be regulated. We show here that IPMK, which has been considered to be a preferentially nuclear protein, is a nucleocytoplasmic shuttling protein, whose nuclear export is mediated by classical nuclear export receptor CRM1. We identified a functional nuclear export signal (NES) additionally to its previously described nuclear import signal (NLS). Furthermore, we describe a mechanism by which the activity of the IPMK-NLS is controlled. Protein kinase CK2 binds endogenous IPMK and phosphorylates it at serine 284. Interestingly, this phosphorylation can decrease nuclear localization of IPMK cell type specifically. A controlled nuclear import of IPMK may direct its actions either toward nuclear inositol phosphate (InsPx) metabolism or cytoplasmic actions on InsPx, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], as well as mTOR-raptor.


Assuntos
Caseína Quinase II/metabolismo , Núcleo Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sinais Direcionadores de Proteínas , Alinhamento de Sequência
12.
Mol Biochem Parasitol ; 181(1): 49-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001062

RESUMO

The parasitic protozoan Entamoeba histolytica is able to invade human tissues by secreting proteolytic enzymes. This secretion is regulated by inositol phosphate-mediated Ca(2+) release from internal stores. To further investigate the inositol phosphate metabolism of Entamoeba histolytica four putative inositol phosphate kinase genes (ehipk1-4) were identified and their expression analyzed by real-time quantitative PCR using RNA of trophozoites. Furthermore inositol phosphate kinase EhIPK1 was recombinantly expressed, purified and enzymatically characterized. Its main activity is the conversion of InsP(6) to 5PP-Ins(1,2,3,4,6)P(5), one of the main inositol phosphates found in Entamoeba histolytica. Remarkably, EhIPK1 possesses several additional enzymatic activities, e.g. the phosphorylation of the Ca(2+)-releasing second messenger Ins(1,4,5)P(3).We were able to identify several compounds with inhibitory potential against EhIPK1. Because of the important role of inositol phosphates in the invasion of human tissues by Entamoeba histolytica, inositol phosphate metabolizing enzymes are interesting targets for novel therapeutic approaches.


Assuntos
Entamoeba histolytica/enzimologia , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Entamoeba histolytica/genética , Inibidores Enzimáticos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
13.
Cell Signal ; 24(3): 621-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21864674

RESUMO

The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in hematopoietic cells. SHIP1 mediates its regulatory function after relocalization from the cytoplasm to the plasma membrane where it converts its substrate PI(3,4,5)P(3) to PI(3,4)P(2) thereby terminating PI3-kinase mediated signaling. In addition, SHIP1 converts Ins(1,3,4,5)P(4) to Ins(1,3,4)P(3) thereby regulating inositol phosphate metabolism. Here we report, that SHIP1 can be detected in nuclear puncta of Jurkat cells by confocal microscopy after expression of SHIP1 from a tetracycline inducible vector. SHIP1-containing nuclear puncta partially co-localize with FLASH, a multifunctional nuclear protein that has been linked to apoptotic signaling and transcriptional control. Nuclear localization was confirmed for endogenously expressed SHIP1 in the myeloid leukemia cell line TF1. In addition, enzymatically active SHIP1 was found in nuclear fractions of Jurkat cells with a similar specific activity as cytoplasmic SHIP1. Further analysis revealed that SHIP1 is a nucleocytoplasmic shuttling protein which is actively imported into and exported out of the nucleus. Nuclear import is mediated by two canonical nuclear localization signals (NLS) i.e. K(327)KSK and K(547)KLR. Mutational inactivation of each NLS motif inhibited nuclear import and reduced the proliferation of cells indicating a functional role of nuclear SHIP1 for cell growth. Our data indicate that SHIP1 is partly localized in the nucleus and suggest that SHIP1 plays a role for nuclear phosphoinositide and/or nuclear inositol phosphate signaling.


Assuntos
Núcleo Celular/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Inositol Polifosfato 5-Fosfatases , Mutagênese Sítio-Dirigida , Sinais de Localização Nuclear/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
14.
Cell Signal ; 24(3): 750-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22120525

RESUMO

Inositol-1,4,5-trisphosphate 3-kinase-A (itpka) accumulates in dendritic spines and seems to be critically involved in synaptic plasticity. The protein possesses two functional activities: it phosphorylates inositol-1,4,5-trisphosphate (Ins(1,4,5)P(3)) and regulates actin dynamics by its F-actin bundling activity. To assess the relevance of these activities for neuronal physiology, we examined the effects of altered itpka levels on cell morphology, Ins(1,4,5)P(3) metabolism and dendritic Ca(2+) signaling in hippocampal neurons. Overexpression of itpka increased the number of dendritic protrusions by 71% in immature primary neurons. In mature neurons, however, the effect of itpka overexpression on formation of dendritic spines was weaker and depletion of itpka did not alter spine density and synaptic contacts. In synaptosomes of mature neurons itpka loss resulted in decreased duration of Ins(1,4,5)P(3) signals and shorter Ins(1,4,5)P(3)-dependent Ca(2+) transients. At synapses of itpka deficient neurons the levels of Ins(1,4,5)P(3)-5-phosphatase (inpp5a) and sarcoplasmic/endoplasmic reticulum calcium ATPase pump-2b (serca2b) were increased, indicating that decreased duration of Ins(1,4,5)P(3) and Ca(2+) signals results from compensatory up-regulation of these proteins. Taken together, our data suggest a dual role for itpka. In developing neurons itpka has a morphogenic effect on dendrites, while the kinase appears to play a key role in shaping Ca(2+) transients at mature synapses.


Assuntos
Cálcio/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Cerebelo/metabolismo , Espinhas Dendríticas/enzimologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Inositol Polifosfato 5-Fosfatases , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sinaptossomos/metabolismo , Transfecção
15.
Int J Cancer ; 129(6): 1300-9, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21792881

RESUMO

Cell migration is one of the hallmarks of metastatic disease and thus identification of migration promoting proteins is crucial for the understanding of metastasis formation. Here we show that the neuron-specific, F-actin bundling inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) is ectopically expressed in tumor cells and critically involved in migration. Down-regulation of ITPKA expression in transformed cell-lines with ectopic expression of ITPKA significantly decreased migration and the number of linear and branched cell protrusion. Conversely, up-regulation of ITPKA in tumor cell lines with low endogenous ITPKA expression increased migration and formation of cell processes. In vitro, ITPKA alone induced the formation of linear actin filaments, whereas ITPKA mediated formation of branched protrusions seems to result from interaction between ITPKA and the F-actin cross-linking protein filamin C. Based on these actin-modulating and migration-promoting effects of ITPKA we examined its expression in clinical samples of different tumor entities, starting with the analysis of multiple tumor tissue arrays. As in lung adenocarcinoma specimens, the highest ITPKA expression rate was found, this tumor entity was examined in more detail. ITPKA was expressed early in adenocarcinoma progression (pN0) and was largely maintained in invasive and metastatic tumor cell populations (pN1/2, lymph node metastases). Together with our result that high expression of ITPKA increases motility of tumor cells we conclude that the observed expression of ITPKA early in tumor development increases the metastatic potential of lung adenocarcinoma cells. Therefore, we suggest that ITPKA may be a promising therapeutic molecular target for anti metastatic therapy of lung cancer.


Assuntos
Movimento Celular , Neoplasias/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Adenocarcinoma/enzimologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Proteínas Contráteis/metabolismo , Feminino , Filaminas , Humanos , Neoplasias Pulmonares/enzimologia , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
16.
Mol Cancer Res ; 9(4): 497-506, 2011 04.
Artigo em Inglês | MEDLINE | ID: mdl-21460179

RESUMO

Under physiologic conditions, the inositol-1,4,5-trisphosphate (InsP(3))-metabolizing, F-actin-bundling InsP(3)-kinase-A (ITPKA) is expressed only in neurons. Tumor cells that have gained the ability to express ITPKA show an increased metastatic potential due to the migration-promoting properties of ITPKA. Here we investigated the mechanism how tumor cells have gained the ability to reexpress ITPKA by using a breast cancer cell line (T47D) with no expression and a lung carcinoma cell line (H1299) with ectopic ITPKA expression. Cloning of a 1,250-bp ITPKA promoter fragment revealed that methylation of CpG islands was reduced in H1299 as compared with T47D cells, but DNA demethylation did not alter the expression of ITPKA. Instead, we showed that the repressor-element-1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), which suppresses expression of neuronal genes in nonneuronal tissues, regulates expression of ITPKA. Knockdown of REST/NRSF induced expression of ITPKA in T47D cells, whereas its overexpression in H1299 cells strongly reduced the level of ITPKA. In T47D cells, REST/NRSF was bound to the RE-1 site of the ITPKA promoter and strongly reduced its activity. In H1299 cells, in contrast, expressing comparable REST/NRSF levels as T47D cells, REST/NRSF only slightly reduced ITPKA promoter activity. This reduced suppressor activity most likely results from expression of a dominant-negative isoform of REST/NRSF, REST4, which impairs binding of REST/NRSF to the RE-1 site. Thus, ITPKA may belong to the neuronal metastasis-promoting proteins whose ectopic reexpression in tumor cells is associated with impaired REST/NRSF activity. Mol Cancer Res; 9(4); 1-10. ©2011 AACR.

17.
J Biol Chem ; 286(6): 4500-10, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21148483

RESUMO

Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/enzimologia , Membrana Nuclear/enzimologia , Sinais de Exportação Nuclear/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Citoesqueleto de Actina/genética , Transporte Ativo do Núcleo Celular/fisiologia , Cálcio/metabolismo , Membrana Celular/genética , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/genética , Inositol 1,4,5-Trifosfato/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Membrana Nuclear/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
18.
Sci Signal ; 4(204): ra90, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22375050

RESUMO

CD4(+)CD25(hi)Foxp3(+) regulatory T cells (T(regs)) are critical mediators of self-tolerance, which is crucial for the prevention of autoimmune disease, but T(regs) can also inhibit antitumor immunity. T(regs) inhibit the proliferation of CD4(+)CD25(-) conventional T cells (T(cons)), as well as the ability of these cells to produce effector cytokines; however, the molecular mechanism of suppression remains unclear. Here, we showed that human T(regs) rapidly suppressed the release of calcium ions (Ca(2+)) from intracellular stores in response to T cell receptor (TCR) activation in T(cons). The inhibition of Ca(2+) signaling resulted in decreased dephosphorylation, and thus decreased activation, of the transcription factor nuclear factor of activated T cells 1 (NFAT1) and reduced the activation of nuclear factor κB (NF-κB). In contrast, Ca(2+)-independent events in T(cons), such as TCR-proximal signaling and activation of the transcription factor activator protein 1 (AP-1), were not affected during coculture with T(regs). Despite suppressing intracellular Ca(2+) mobilization, coculture with T(regs) did not block the generation of inositol 1,4,5-trisphosphate in TCR-stimulated T(cons). The T(reg)-induced suppression of the activity of NFAT and NF-κB and of the expression of the gene encoding the cytokine interleukin-2 was reversed in T(cons) by increasing the concentration of intracellular Ca(2+). Our results elucidate a previously unrecognized and rapid mechanism of T(reg)-mediated suppression. This increased understanding of T(reg) function may be exploited to generate possible therapies for the treatment of autoimmune diseases and cancer.


Assuntos
Sinalização do Cálcio/imunologia , Tolerância Imunológica , Ativação Linfocitária , NF-kappa B/imunologia , Fatores de Transcrição NFATC/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Cálcio/imunologia , Cálcio/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-2/imunologia , Interleucina-2/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Fosfatos de Fosfatidilinositol/imunologia , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo
19.
Methods Mol Biol ; 645: 103-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20645184

RESUMO

A nonradioactive high-performance anion-exchange chromatographic method based on MDD-HPLC (Mayr Biochem. J. 254:585-591, 1988) was developed for the separation of inositol hexakisphosphate (InsP(6), phytic acid) and most isomers of pyrophosphorylated inositol phosphates, such as diphosphoinositol pentakisphosphate (PPInsP(5) or InsP(7)) and bis-diphosphoinositol tetrakisphosphate (bisPPInsP(4) or InsP(8)). With an acidic elution, the anion-exchange separation led to the resolution of four separable PPInsP(5) isomers (including pairs of enantiomers) into three peaks and of nine separable bisPPInsP(4) isomers into nine peaks. The whole separation procedure was completed within 20-36 min after optimization. Reference standards of all bisPPInsP(4) isomers were generated by a nonenzymatic shotgun synthesis from InsP(6). Hereby, the phosphorylation was brought about nonenzymatically when concentrated InsP(6) bound to the solid surface of anion-exchange beads was incubated with creatine phosphate under optimal pH conditions. From the mixture of pyrophosphorylated InsP(6) derivatives containing all theoretically possible isomers of PPInsP(5), bisPPInsP(4), and also some isomers of trisPPInsP(3), isomers were separated by anion-exchange chromatography and fractions served as reference standards of bisPPInsP(4) isomers for further investigation. Their isomeric nature could be partly assigned by comparison with position specifically synthesized or NMR-characterized purified protozoan reference compounds and partly by limited hydrolysis to PPInsP(5) isomers. By applying this nonradioactive analysis technique to cellular studies, the isomeric nature of the major bisPPInsP(4) in mammalian cells could be identified without the need to obtain sufficient material for NMR analysis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Difosfatos/síntese química , Difosfatos/isolamento & purificação , Fosfatos de Inositol/síntese química , Fosfatos de Inositol/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão/instrumentação , Difosfatos/química , Desenho de Equipamento , Fosfatos de Inositol/química , Isomerismo , Camundongos , Ácido Fítico/síntese química , Ácido Fítico/química , Ácido Fítico/isolamento & purificação , Células Swiss 3T3
20.
J Biol Chem ; 285(8): 5541-54, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20022963

RESUMO

Cellular migration is an essential prerequisite for metastatic dissemination of cancer cells. This study demonstrates that the neuron/testis-specific F-actin-targeted inositol 1,4,5-trisphosphate 3-kinase-A (ITPKA) is ectopically expressed in different human tumor cell lines and during tumor progression in the metastatic tumor model Balb-neuT. High expression of ITPKA increases invasive migration in vitro and metastasis in a xenograft SCID mouse model. Mechanistic studies show that ITPKA promotes migration of tumor cells by two different mechanisms as follows: growth factor independently high levels of ITPKA induce the formation of large cellular protrusions by directly modulating the actin cytoskeleton. The F-actin binding activity of ITPKA stabilizes and bundles actin filaments and thus increases the levels of cellular F-actin. In growth factor-stimulated cells, the catalytically active domain enhances basal ITPKA-induced migration by activating store-operated calcium entry through production of inositol 1,3,4,5-tetrakisphosphate and subsequent inhibition of inositol phosphate 5-phosphatase. These two functional activities of ITPKA stimulating tumor cell migration place the enzyme among the potential targets of anti-metastatic therapy.


Assuntos
Movimento Celular , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Células Hep G2 , Humanos , Fosfatos de Inositol/metabolismo , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Transplante de Neoplasias , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...