Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(45): 30960-30965, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37937503

RESUMO

We investigate the role of interstitial electronic states in the metal-to-semiconductor transition and the origin of the volume collapse in Ca2N during the pressure-induced phase transitions accompanied by changes of electride subspace dimensionality. Our findings highlight the importance of correlation effects in the electride subsystem as an essential component of the complex phase transformation mechanism. By employing a simplified model that incorporates the distortion of the local environment surrounding the interstitial quasi-atom (ISQ) which emerges under pressure and solving this model by Dynamical Mean Field Theory (DMFT), we successfully reproduced the evolution between the metallic and semiconducting phases and captured the remarkable volume collapse. Central to this observation is a significant enhancement of the localization of excess electrons and the emergence of antiferromagnetic pairing among them, leading to a spin-state transition with a notable reduction in the magnetic moment on the interstitial states.

2.
J Phys Chem Lett ; 13(31): 7155-7160, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904271

RESUMO

Electrides contain interstitial electrons with the states that are spatially separated from the crystal framework states and form a detached electronic subsystem. In mayenite [Ca12Al14O32]2+(e-)2 interstitial electrons form a unique charge network where localization and delocalization coexist, pointing to the importance of investigating the many-body nature of electride states. Using density functional theory and dynamical mean-field theory, we show a tendency toward electron localization and antiferromagnetic pairing, which leads to the formation of an experimentally observed peak under the Fermi level. The effect is associated with strong hybridization between interstitial electronic states, which removes the degeneracy and leads to the formation of a singlet state on a bonding molecular orbital as well as with the Coulomb interaction between interstitial electrons. Our work provides a fundamental understanding of the localization mechanism of interstitial electrons in mayenite and proposes a new approach for a proper description of the electronic subsystem of mayenite and other electrides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...