Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(4): 1657-1662, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168793

RESUMO

Due to their versatility and easy processing, Surface-Anchored Metal-Organic Frameworks (SurMOFs) have gained interest in recent times as promising electrochromic thin films. Herein a step forward in their use and characterization was achieved thanks to the integration of {Zn2(PDICl4)2} SurMOFs in a multi-layer electrochromic device (ECD), based on a membrane-like electrolyte. The optical and electrochemical properties of the ECD were fully characterized, revealing a two-step reduction process localized on the organic ligand and involving subsequent near infra-red (NIR) and cyan absorbing states, leading to optical modulation of the films. The species responsible for this absorption were isolated and identified in the reduced states. In parallel to experimental characterization, quantum chemistry was successfully used to investigate the structure-property relationship of the SurMOF, revealing additional information regarding the structure and the local environment of the electrochromic ligand.

2.
Acc Chem Res ; 55(2): 171-185, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34979086

RESUMO

ConspectusThe properties of a material depend upon its physical characteristics, one of these being its crystalline state. Next generation solid-state technologies will integrate crystalline oxides into thermal sensitive processes and composite materials. Crystallization of amorphous phases of metal oxides in the solid state typically requires substantial energy input to induce the amorphous to crystalline phase transformation. In the case of silica, the transformation to α-quartz in a furnace occurs above 1300 °C and that of titania, above 400 °C. These calcination processes are costly in energy but also often degrade complex material architectures or compositions.Thus, low temperature crystallization techniques are required that preserve macro- and mesostructures and complex elemental composition (e.g., organic-, metal-, and semiconductor-metal oxide hybrids/composites). Some solution-based techniques exist to directly fabricate crystalline metal oxides. However, these are not always compatible with the specificities of the system or industrial constraints. A postsynthetic, solid-state approach that reduces crystallization temperature in metal oxides is metal-induced crystallization (MIC).MIC is the introduction of catalytic amounts of a cation, which can be an s-block, p-block, or d-block cation, that migrates through the solid metal oxide lattice. The cation is thought to temporarily break metal oxide bonds, allowing [MOx] polyhedra to rotate and reform bonds with neighboring [MOx] groups in a lower energy crystalline phase. Depending on the system, the cation can favor or defavor the formation of a particular crystalline phase, providing a means to tune the purity and crystalline phase ratios. An advantage of MIC is that, although the crystallization occurs in the solid state, the crystallization process can be accomplished for particle suspensions in liquid media. In this case, the energy required to induce the crystallization can come from, for example, a microwave or an ultrasound bath. The crystallization of particles in suspension avoids aggregation from particle-particle sintering. In the case of thin films, the energy for crystallization typically comes from a laser or calcination.MIC is only recently being used as a low temperature metal oxide crystallization technique, despite being widely used in the semiconductor industry. Here, the mechanism and previous studies in MIC are presented for titania, silica, and other oxides. The beauty of this technique is that it is extremely easy to employ: cations can be incorporated into the system postsynthetically and then are often expelled from the lattice upon phase conversion. We expect MIC to enrich materials for photochromic, optoelectronic, catalyst, biological, and other applications.

3.
ACS Appl Mater Interfaces ; 13(48): 57768-57773, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808056

RESUMO

Metal-organic frameworks (MOFs) built from different building units offer functionalities going far beyond gas storage and separation. In connection with advanced applications, e.g., in optoelectronics, hierarchical MOF-on-MOF structures fabricated using sophisticated methodologies have recently become particularly attractive. Here, we demonstrate that the structural complexity of MOF-based architectures can be further increased by employing highly spatioselective photochemistry. Using a layer-by-layer, quasi-epitaxial synthesis method, we realized a photoactive MOF-on-MOF hetero-bilayer consisting of a porphyrinic bottom layer and a tetraphenylethylene (TPE)-based top layer. Illumination of the monolithic thin film with visible light in the presence of oxygen gas results in the generation of reactive oxygen species (1O2) in the porphyrinic bottom layer, which lead to a photocleavage of the TPE units at the internal interface. We demonstrate that this spatioselective photochemistry can be utilized to delaminate the top layers, yielding two-dimensional (2D) MOF sheets with well-defined thickness. Experiments using atomic force microscopy (AFM) demonstrate that these platelets can be transferred onto other substrates, thus opening up the possibility of fabricating planar MOF structures using photolithography.

4.
Inorg Chem ; 59(9): 6232-6241, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324402

RESUMO

Here, we present a new crystallization process which, by combining microwaves and metal-induced devitrification, reduces both the time and the temperature of crystallization compared to other known methods. Titania crystallization initiates at a temperature as low as 125 °C within a few minutes of microwave radiation. Several cations induce this low-temperature crystallization, namely, Mn2+, Co2+, Ni2+, Al3+, Cu2+ and Zn2+. The crystallization mechanism is probed with electron microscopy, elemental mapping, single-particle inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning Auger mapping. These techniques show that the metal ion migration through the vitreous titania under microwave radiation occurs prior to crystallization. The crystalline particles are suspended in solution at the end of the treatment, avoiding particle aggregation and sintering. The crystalline suspensions are thus ready for processing into a material or employment in any other application. This combination of microwaves and metal-induced crystallization is applied here to TiO2, but we are investigating its application to other materials as an ecofriendly crystallization method.

5.
Nat Commun ; 10(1): 2048, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053704

RESUMO

In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable "steric control units" (SCUs). We determined the optimal alignment of core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a computational analysis. Then, we created a large library of handle-equipped MOF chromophoric linkers and computationally screened for the best SCUs. A thorough photophysical characterization confirmed the formation of J-aggregates with bright green emission, with unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This data demonstrates the viability of MOF-based crystal engineering approaches that can be universally applied to tailor the photophysical properties of organic semiconductor materials.

6.
Nat Commun ; 9(1): 4332, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337528

RESUMO

An ideal material for photon harvesting must allow control of the exciton diffusion length and directionality. This is necessary in order to guide excitons to a reaction center, where their energy can drive a desired process. To reach this goal both of the following are required; short- and long-range structural order in the material and a detailed understanding of the excitonic transport. Here we present a strategy to realize crystalline chromophore assemblies with bespoke architecture. We demonstrate this approach by assembling anthracene dibenzoic acid chromophore into a highly anisotropic, crystalline structure using a layer-by-layer process. We observe two different types of photoexcited states; one monomer-related, the other excimer-related. By incorporating energy-accepting chromophores in this crystalline assembly at different positions, we demonstrate the highly anisotropic motion of the excimer-related state along the [010] direction of the chromophore assembly. In contrast, this anisotropic effect is inefficient for the monomer-related excited state.

7.
Angew Chem Int Ed Engl ; 57(41): 13662-13665, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30160815

RESUMO

Photochemical reactions typically proceed via multiple reaction pathways, yielding a variety of isomers and products. Enhancing the selectivity is challenging. Now, the potential of supramolecular control for oxidative photocyclization of a tetraarylethylene, containing a stereogenic -C=C- bond, is demonstrated. In solution, this photochemical reaction produces three constitutional isomers (substituted phenanthrenes), with slow kinetics. When the reactant is assembled into a crystalline framework, only one product forms with accelerated kinetics. Key to this selectivity enhancement is the integration into a surface grown metal-organic framework (SURMOF); the dramatic gain in selectivity is ascribed to the hindrance of the rotational freedom of the -C=C- double bond. The structure of the MOF is key; the corresponding reaction in the solid does not result in such a high increase in selectivity. A striking change of luminescence properties after photocyclization is observed.

8.
Chemistry ; 23(57): 14316-14322, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28815774

RESUMO

When chromophores are brought into close proximity, noncovalent interactions (π-π/CH-π) can lead to the formation of excitonically coupled states, which bestow new photophysical properties upon the aggregates. Because the properties of the new states not only depend on the strength of intermolecular interactions, but also on the relative orientation, supramolecular assemblies, where these parameters can be varied in a deliberate fashion, provide novel possibilities for the control of photophysical properties. This work reports that core-substituted naphthalene diimides (cNDIs) can be incorporated into surface-mounted metal- organic structures/frameworks (SURMOFs) to yield optical properties strikingly different from conventional aggregates of such molecules, for example, formed in solution or by crystallization. Organic linkers are used, based on cNDIs, well-known organic chromophores with numerous applications in different optoelectronic devices, to fabricate MOF thin films on transparent substrates. A thorough characterization of the properties of these highly ordered chromophoric assemblies reveals the presence of non-emissive excited states in the crystalline material. Structural modulations provide further insights into the nature of the coupling that gives rise to an excited-state energy level in the periodic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...