Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 127(7): e2022JA030374, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248014

RESUMO

The scale size of the plasma boundary region between the sheath and ionosphere in the Martian system is often similar to the gyro-radii of sheath protons, ∼200 km. As a result, ion energization via kinetic structures may play an important role in modifying the ion trajectories and thus be important when evaluating the large-scale dynamics of the Martian system. In this paper, we report observations made with the MAVEN Langmuir Probe and Waves instrument of solitary bipolar electric field structures, and assess their potential role in ion energization in the Martian system. The observed structures appear as short duration (∼0.5 ms) bipolar electric field pulses of ∼1-25 mV/m, and are frequently observed in the upstream solar wind and inside the sheath. The study presented in this paper suggests that the bipolar electric field structures observed at Mars have an average electrostatic potential drop of ∼0.07 V. The estimated upper rate at which these structures could further energize the protons is estimated, assuming the protons gain the full 0.07 eV, to be ∼0.13 eV per gyration, or a change in proton energy of ∼0.3%, and a corresponding change in the gyroradius of ∼0.3 km. These numbers imply that to first order the bipolar structures are not a significant source of ion energization in the Martian magnetosheath.

2.
J Geophys Res Space Phys ; 127(1): e2021JA029942, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35865029

RESUMO

We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two-dimensional (2D) and three-dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal to the bow shock at any given point on it. Two simple bow shock detection algorithms are constructed, one solely based on a geometrical predictor from existing models, the other using this predicted position to further refine it with the help of magnetometer data, an instrument flown on many planetary missions. Both empirical techniques are applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted shock position is on average within 0.15 planetary radius R p of the bow shock crossing. Using the predictor-corrector algorithm, this estimate is further refined to within a few minutes of the true crossing (≈0.05R p). Between 2014 and 2021, we detect 14,929 clear bow shock crossings, predominantly quasi-perpendicular. Thanks to 2D conic and 3D quadratic fits, we investigate the variability of the shock surface with respect to Mars Years (MY), solar longitude (Ls), and solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, we show that for MY32 and MY35, Ls = [135°-225°] and high solar flux, it can become particularly noticeable, and is superimposed to the usual North-South asymmetry due in part to the presence of crustal magnetic fields.

3.
J Geophys Res Space Phys ; 127(1): e2021JA029811, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35860696

RESUMO

We present an in-depth analysis of a time interval when quasi-linear mirror mode structures were detected by magnetic field and plasma measurements as observed by the NASA/Mars Atmosphere and Volatile EvolutioN spacecraft. We employ ion and electron spectrometers in tandem to support the magnetic field measurements and confirm that the signatures are indeed mirror modes. Wedged against the magnetic pile-up boundary, the low-frequency signatures last on average ∼ 10 s with corresponding sizes of the order of 15-30 upstream solar wind proton thermal gyroradii, or 10-20 proton gyroradii in the immediate wake of the quasi-perpendicular bow shock. Their peak-to-peak amplitudes are of the order of 30-35 nT with respect to the background field, and appear as a mixture of dips and peaks, suggesting that they may have been at different stages in their evolution. Situated in a marginally stable plasma with ß â€– âˆ¼ 1, we hypothesize that these so-called magnetic bottles, containing a relatively higher energy and denser ion population with respect to the background plasma, are formed upstream of the spacecraft behind the quasi-perpendicular shock. These signatures are very reminiscent of magnetic bottles found at other unmagnetized objects such as Venus and comets, also interpreted as mirror modes. Our case study constitutes the first unmistakable identification and characterization of mirror modes at Mars from the joint points of view of magnetic field, electron and ion measurements. Up until now, the lack of high-temporal resolution plasma measurements has prevented such an in-depth study.

4.
Exp Astron (Dordr) ; 54(2-3): 641-676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36915625

RESUMO

The objective of this White Paper, submitted to ESA's Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars' magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...