Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896679

RESUMO

Detecting trace amounts of explosives is important for maintaining national security due to the growing threat of terror attacks. Particularly challenging is the increasing use of homemade explosives. Therefore, there is a constant need to improve existing technologies for detecting trace amounts of explosives. This paper describes the design of a stationary device (a gate) for detecting trace amounts of explosives and explosive taggants and the design of differential ion mobility spectrometers with a focus on the gas system. Nitromethane (NM), trimeric acetone peroxide (TATP), hexamine peroxide (HMTD), and explosive taggants 2,3-dimethyl-2,3-dinitrobutane (DMDNB) and 4-nitrotoluene (4NT) were used in this study. Gate measurements were carried out by taking air from the hands, pocket area, and shoes of the tested person. Two differential ion mobility spectrometers operating in two different modes were used as explosive detectors: a mode with a semi-permeable membrane to detect explosives with high vapor pressures (such as TATP) and a mode without a semi-permeable membrane (using direct introduction of the sample into the measuring chamber) to detect explosives with low vapor pressures (such as HMTD). The device was able to detect trace amounts of selected explosives/explosive taggants in 5 s.

2.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679500

RESUMO

It has become increasingly important to monitor environment contamination by such chemicals as chemical warfare agents (CWAs) and industrial toxic chemicals (TICs), as well as radiation hazards around and inside collective protection facilities. This is especially important given the increased risk of terrorist or military attacks. The Military Institute of Chemistry and Radiometry (MICR) has constructed and developed the ALERT device for the effective monitoring of these threats. This device uses sensors that detect chemical and radiological contaminations in the air. The CWA detector is an ion mobility spectrometer, TICs are detected by electrochemical sensors, and radiation hazards are detected via Geiger-Muller tubes. The system was designed to protect the crew from contamination. When chemical or radioactive contamination is detected at the air inlet for the shelter, air filtration through a carbon filter is activated. At this time, the air test procedure at the filter outlet is started to test the condition of the filter on an ongoing basis. After detecting contamination at the filter outlet, the system turns off the air pumping and the service can start the procedure of replacing the damaged carbon filter. This paper presents the results of laboratory testing of the ALERT gas alarm detector, which showed high measurements for important parameters, including sensitivity, repeatability, accuracy, and speed.


Assuntos
Poluição do Ar , Substâncias para a Guerra Química , Monitoramento de Radiação , Substâncias para a Guerra Química/análise , Poluição Ambiental , Radiometria
3.
Sensors (Basel) ; 21(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283071

RESUMO

One of the significant problems in the modern world is the detection of improvised explosives made of materials synthesized at home. Such compounds include triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD). An attempt was made to construct an instrument allowing for the simultaneous detection of both compounds despite the large difference of vapor pressure: very high for TATP and very low for HMTD. The developed system uses differential ion mobility spectrometry (DMS) in combination with a specially designed gas sample injection system. The created system of detectors allowed for the detection of a high concentration of TATP and a very low concentration of HMTD. TATP detection was possible despite the presence of impurities-acetone remaining from the technological process and formed as a coproduct of diacetone diperoxide (DADP) synthesis. Ammonia added to the carrier gas improved the possibility of detecting the abovementioned explosives, reducing the intensity of the acetone signal. The obtained results were then compared with the detection capabilities of drift tube ion mobility spectrometer (DT-IMS), which has not made possible such detection as DMS.

4.
Polymers (Basel) ; 13(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199443

RESUMO

This paper deals with the problem of detecting benzyl methyl ketone (BMK), which is a precursor of amphetamine that can be synthesized in home labs. The focus of our work was to identify an improvement for the analysis of sewage introduced into the municipal sewage system. The sensors used to detect BKM in these systems are often clogged and therefore cannot function properly. In this article, a new method of detecting BMK and other chemicals in wastewater is presented. A system containing capillary polypropylene, hydrophobized with polysiloxane coating fibers was prepared. These solutions were used for continuous online measurements by ion mobility spectrometry. The use of pipes with a polysiloxane coating reduces the permeation of water and significantly increases the BMK permeation due to its high solubility in the polymer.

5.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011466

RESUMO

The article presents a technique of differential ion mobility spectrometry (DMS) applicable to the detection and identification of volatile organic compounds (VOCs) from such categories as n-alkanes, alcohols, acetate esters, ketones, botulinum toxin, BTX, and fluoro- and chloro-organic compounds. A possibility of mixture identification using only the DMS spectrometer is analyzed, and several examples are published for the first time. An analysis of different compounds and their mechanisms of fragmentation, influence on effective ion temperature, and high electric field intensity is discussed.

6.
Talanta ; 194: 259-265, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609528

RESUMO

Electron capture detectors (ECDs) and detectors used in ion mobility spectrometry (IMS) have been successfully used for the detection of numerous compounds including hazardous substances. The general principles of their operations are similar and based on sample component ionization and measurement of the signal using the differences in the mobility of electric charge carriers. Differences in sensitivity result from various parameters of these instruments. Value of electric field intensity in ionic reactors have an influence on ionization process. The main goal of the performed tests was to compare the analytical properties of ECD and two types of IMS detectors: a drift tube spectrometer (DT IMS) and a differential mobility spectrometer (DMS). In the work performed, the efficiency of ionization and the response of detectors to selected analytes were compared. ECD, DT IMS and DMS were equipped with 63-Ni radioactive sources. Analytes have been ionized via electron capture process or dissociative electron transfer. Results obtained for oxygen and chloro-substituted organic compounds (carbon tetrachloride, benzyl chloride, chloroform, 2-chloroethyl ethyl sulfide) were used to calculate the relative signal and to compare the ionization efficiency for three detectors. The phenomena observed experimentally were related to energy dependencies and electron capture cross-sections of analytes. The efficiency of ionization in DT IMS was also compared for electron capture when nitrogen was used as the carrier gas, and when the ionization process was based on the collisions of the analyte molecules with the O2- with the use of air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...