Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172215, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580117

RESUMO

Water pollution has become a critical global concern requiring effective monitoring techniques and robust protection strategies. Contaminants of emerging concern (CECs) are increasingly detected in various water sources, with their harmful effects on humans and ecosystems continually evolving. Based on literature reports highlighting the promising sorption properties of metal-organic frameworks (MOFs), the aim of this study was to evaluate the suitability of NH2-MIL-125 (Ti) and UiO-66 (Ce) as sorbents in passive sampling devices (MOFs-PSDs) for the collection and extraction of a wide group of CECs. Solvothermal methods were used to synthesize MOFs, and the characterization of the obtained materials was performed using field-emission scanning electron microscopy (FE-SEM), powder X-ray diffractometry (pXRD) and Fourier-transform infrared (FTIR) spectroscopy. The research demonstrated the sorption capabilities of the tested MOFs, the ease and rapidity of their chemical regeneration and the possibility of reuse as sorbents. Using chemometric analysis, the structural properties of CECs determining the sorption efficiency on the surface of NH2-MIL-125 (Ti) were identified. The MOFs-PSDs were lab-calibrated to examine the kinetics of analytes sorption and determine the sampling rates (Rs). MOFs-PSDs and CNTs-PSDs (PSDs containing carbon nanotubes as a sorbent) were then placed in the Elblag River and the Vistula Lagoon to sampling and extraction of the target compounds from the water. CNTs-PSDs were selected, based on our previous research, for the comparison of the effectiveness of the MOFs-PSDs in environmental monitoring. MOFs-PSDs were successfully used in monitoring of CECs in water. The time-weighted average concentrations (CTWA) of 2-hydroxycarbamazepine, carbamazepine-10,11-epoxide, p-nitrophenol, 3,5-dichlorophenol and caffeine were determined in the Elblag River and CTWA of metoprolol, diclofenac, 2-hydroxycarbamazepine, carbamazepine-10,11-epoxide, p-nitrophenol, 3,5-dichlorophenol and caffeine were determine in the Vistula Lagoon using MOFs-PSDs and a high-performance liquid chromatography coupled with triple quadrupole mass spectrometer.

2.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470740

RESUMO

The use of heterogeneous photocatalysis in biologically contaminated water purification processes still requires the development of materials active in visible light, preferably in the form of thin films. Herein, we report nanotube structures made of TiO2/Ag2O/Au0, TiO2/Ag2O/PtOx, TiO2/Cu2O/Au0, and TiO2/Cu2O/PtOx obtained via one-step anodic oxidation of the titanium-based alloys (Ti94Ag5Au1, Ti94Cu5Pt1, Ti94Cu5Au1, and Ti94Ag5Pt1) possessing high visible light activity in the inactivation process of methicillin-susceptible S. aureus and other pathogenic bacteria-E. coli, Clostridium sp., and K. oxytoca. In the samples made from Ti-based alloys, metal/metal oxide nanoparticles were formed, which were located on the surface and inside the walls of the NTs. The obtained results showed that oxygen species produced at the surface of irradiated photocatalysts and the presence of copper and silver species in the photoactive layers both contributed to the inactivation of bacteria. Photocatalytic inactivation of E. coli, S. aureus, and Clostridium sp. was confirmed via TEM imaging of bacterium cell destruction and the detection of CO2 as a result of bacteria cell mineralization for the most active sample. These results suggest that the membrane ruptures as a result of the attack of active oxygen species, and then, both the membrane and the contents are mineralized to CO2.

3.
Sci Total Environ ; 887: 164000, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37169186

RESUMO

Pharmaceutical and personal care products (PPCPs) have been consumed in great extension and most of these are found in water bodies, owing to the inefficiency of conventional wastewater treatments. To face against these recalcitrant contaminants, advanced oxidation processes such as photocatalysis and ozonation have been studied. Moreover, the combination of these technologies can improve the degradation of PPCPs, reducing the ozone consumption and the effluent toxicity with the presence of photocatalysts. In particular, this study aimed to evaluate the effects of different N and Ce loads in co-doping TiO2 catalysts on the efficiency of photocatalytic oxidation and photocatalytic ozonation for PPCPs abatement, as well as on the resultant toxicity to aquatic species. Different radiation sources (UVA and solar radiation) were considered for the photocatalytic oxidation. A mixture of 5 PPCPs: paracetamol, sulfamethoxazole, carbamazepine, methylparaben and propylparaben was used as a model synthetic effluent. Photocatalysis showed a low efficiency on the PPCPs removal (<20 %), which was not affected by the radiation source. In general, the tested catalysts showed no or low added-value for reducing the toxicity of the synthetic effluent. Concerning photocatalytic ozonation, the lowest N amount (2.5 % w/w) promoted the best results for PPCPs removal, achieving values up to 100 % with significant reduction of ozone dose compared to photolytic ozonation. In general, photocatalytic ozonation showed better ecotoxicological performance than single photocatalysis. Compared to single photolytic ozonation, a benefitial effect was observed for two aquatic species, using a specific catalyst. This catalyst, prepared by doping TiO2 with 2.5 % w/w N and 1.2 % w/w Ce, showed to be the most promisong one, with potential to be used in photocatalytic ozonation. Hence, this work highlights the potential role of N and Ce co-doped TiO2-based catalysts in photocatalytic ozonation for wastewater treatment.

4.
Adv Colloid Interface Sci ; 314: 102864, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001207

RESUMO

Designable morphology and predictable properties are the most challenging goals in material engineering. Features such as shape, size, porosity, agglomeration ratio significantly affect the final properties of metal-organic frameworks (MOFs) and can be regulated throughout synthesis parameters but require a deep understanding of the mechanisms of MOFs formation. Herein, we systematically summarize the effects of the individual synthesis factors, such as pH of reaction mixture, including acidic or basic character of modulators, temperature, solvents types, surfactants type and content and ionic liquids on the morphology of growing MOFs. We identified main mechanisms of MOFs' growth leading to different morphology of final particles and next systematically discuss the effect of miscellaneous parameters on MOFs morphology based on the main mechanisms related to the nucleation, growth and formation of final MOFs structure, including coordination modulation, protonation/deprotonation acting and modulation by surfactants or capping agents. The effect of microwaves and ultrasound employment during synthesis is also considered due to their affecting especially nucleation and particles growing steps during MOFs formation.

5.
Dalton Trans ; 51(15): 5962-5976, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348154

RESUMO

In recent years, the growing interest in applying photoelectrocatalysis (PEC) to decompose organic pollutants has resulted in the need to search for new photoelectrode materials with high activity under visible light radiation. The presented research showed an increased photoelectrocatalytic activity under sunlight of Ti/TiO2 sensitized with SnS quantum dots, obtained by the successive ionic layer adsorption and reaction (SILAR) method. The presence of SnS caused the enhanced absorption of visible irradiation and the reduction of recombination of generated charges by a p-n heterojunction created with the TiO2. The highest efficiency of photoelectrocatalytic degradation of anticancer drugs (ifosfamide, 5-fluorouracil, imatinib) was achieved for the SnS-Ti/TiO2 photoelectrode with a SnS quantum dot size from 4 to 10 nm. In addition, a decrease of IF PEC degradation efficiency was observed with increasing pH and with the presence of Cl-, NO3-, HCO3- and organic matter in the treated solution. Studies of the PEC mechanism have shown that drug degradation occurs mainly as a result of the direct and indirect action of photogenerated holes on the SnS-Ti/TiO2 photoelectrode, and the identified degradation products allowed for the presentation of the degradation pathway of IF, 5-FU and IMB. Duckweed (Lemna minor) growth inhibition tests showed no toxicity of the drug solutions after treatment.


Assuntos
Antineoplásicos , Nanotubos , Pontos Quânticos , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Luz Solar , Titânio
6.
J Hazard Mater ; 421: 126751, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34343880

RESUMO

One of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO2 nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO2 nanotubes by PbS quantum dots (QD). The ifosfamide (IF) degradation rate constants was twice as higher for PbS-Ti/TiO2 (0.0148 min-1) than for Ti/TiO2 (0.0072 min-1). Our research showed the highest efficiency of PEC degradation of drugs using IIIPbS-Ti/TiO2 made with 3 SILAR cycles (PbS QD size mainly 2-4 nm). The 4 and 6 of SILAR cycles resulted in the aggregation of PbS nanoparticles on the Ti/TiO2 surface and decreased IF PEC degradation rate to 0.0043 and 0.0033 min-1, respectively. Research on PEC mechanism has shown that the drugs are degraded mainly by the activity of photogenerated holes and hydroxyl radicals. In addition, the identified drug intermediates made possible to propose a degradation pathways of anticancer drugs and the ecotoxicity test show no inhibition of Lemna minor growth of treated solutions.


Assuntos
Antineoplásicos , Nanotubos , Pontos Quânticos , Energia Solar , Titânio
7.
Materials (Basel) ; 13(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784513

RESUMO

Taking our current environmental situation in the world into consideration, people should face growing problems of air and water pollution. Heterogeneous photocatalysis is a highly promising tool to improve both air and water quality through decomposition/mineralization of contaminants directly into harmless CO2 and H2O under ambient conditions. In this contribution, we focused on the synthesis of self-assembly WO3 thin films via an electrochemical approach in the aqueous electrolyte containing fluoride ions toward air purification. The effect of preparation conditions such as applied potential (10-50 V), anodization time (15-120 min), concentration of H2SO4 (0.5-1.5 M) and NaF (0.1-1.0 wt.%) on the morphology, photocurrent response, and photocatalytic activity addressed to removal of air pollutant in the presence of as-prepared WO3 samples were thoroughly examined and presented. The results revealed the growth of nanoplatelets and their gradual transformation into flower-like structures. The oxide layers and platelet thickness of the WO3 samples were found to be proportionally related with the synthesis conditions. The photocatalytic ability toward air purification was evaluated by degradation of toluene from air mixture using low-powered LEDs as an irradiation source (λmax = 415 nm). The highest photoactivity was achieved in presence of the sample which possessed a well-ordered, regular shape and repeatable distribution of flower buds (100% of degradation). The results have confirmed that the oxide layer thickness of the anodic WO3 significantly affected the photocatalytic activity, which increased with the increasing thickness of WO3 (to 1.05 µm) and then had a downward trend. The photocurrent response evidenced that the well-organized sample had the highest ability in photocurrent generation under UV-Vis and Vis irradiation. Finally, a possible growth mechanism of WO3 NFs was also discussed.

8.
Sci Total Environ ; 743: 140831, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679505

RESUMO

Titanium dioxide can present advantages when coupled with ozonation. Moreover, the catalytic ozonation can be enhanced by radiation. The main disadvantage of this technology is the use of a suspended catalyst entailing a separation step. Thus, catalytic ozonation was analysed using supported TiO2 nanotubes prepared by anodization at different voltages. The effect of different radiation sources on the catalytic ozonation of parabens was tested. The increase on voltage preparation led to plates with higher surface areas from 60 to 280 cm2. However, this did not improve the parabens mixture degradation during UVA photocatalytic ozonation. The use of sunlight radiation allows a significant reduction in terms of time necessary for total parabens degradation from 15 to 10 min. However, the amount of ozone required doubles. Catalytic ozonation presents worst results than single ozonation. This means that molecular ozone is the main responsible for degradation. No dissolved ozone was detected at the experiments with supported nanotubes which could mean that it was adsorbed on the catalysts surface decreasing the degradation rates. The presence of municipal wastewaters as matrix inhibited parabens degradation for both single and catalytic ozonation, mainly due to the trapping ozone effect. In fact, for the TOD of 4.5 mg/L it was just possible to remove about 80% of parabens when MWW compared to 100% when UP was used. Even so, the presence of supported nanotubes during ozonation seems to be required to reduce the toxicity of the resultant treated effluent. In fact, the wastewater luminescence inhibition decreased (from 100 to 43%) and germination index increased (from 7 to 97%) with catalytic ozonation which may enable treated water reuse.

9.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31546990

RESUMO

One of the most important challenges in the fabrication of ordered tantalum pentaoxide (Ta2O5) nanotube arrays (NTs) via the electrochemical method is the formation of nanotubes that adhere well to the Ta substrate. In this paper, we propose a new protocol that allows tight-fitting Ta2O5 nanotubes to be obtained through the anodic oxidation of tantalum foil. Moreover, to enhance their activity in the photocatalytic reaction, in this study, they have been decorated by nontoxic bismuth sulfide (Bi2S3) quantum dots (QDs) via a simple successive ionic layer adsorption and reaction (SILAR) method. Transmission electron microscopy (TEM) analysis revealed that quantum dots with a size in the range of 6-11 nm were located both inside and on the external surfaces of the Ta2O5 NTs. The effect of the anodization time and annealing conditions, as well as the effect of cycle numbers in the SILAR method, on the surface properties and photoactivity of Ta2O5 nanotubes and Bi2S3/Ta2O5 composites have been investigated. The Ta2O5 nanotubes decorated with Bi2S3 QDs exhibit high photocatalytic activity in the toluene degradation reaction, i.e., 99% of toluene (C0 = 200 ppm) was degraded after 5 min of UV-Vis irradiation. Therefore, the proposed anodic oxidation of tantalum (Ta) foil followed by SILAR decorating allows a photocatalytic surface, ready to use for pollutant degradation in the gas phase, to be obtained.

10.
Sci Total Environ ; 689: 79-89, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271992

RESUMO

Self-organized TiO2 nanotubes as immobilized photocatalysts were evaluated in detail for the photocatalytic degradation of parabens mixtures from ultrapure water. This kind of approach can be a very suitable option for emerging contaminants degradation considering the possibility of the catalyst reuse and recovery which will be simpler than when catalytic powders are used. The anodization method was applied for the TiO2 nanotubes production under different preparation voltages (20, 30 and 40 V). These preparation conditions are important on the morphological characteristics of nanotubes such as length, as well as internal and external diameters. The photocatalytic efficiency was dependent on the materials preparation voltages. The photocatalytic oxidation was evaluated using two different irradiation sources, namely UVA and sunlight. These irradiation sources were evaluated for parabens mixture degradation using different number of catalytic plates. The increase of the number of plates improved the parabens degradation possibly due to the availability of more active sites which can be relevant for the hydroxyl radical's generation. The effect of the reactor design was also evaluated using sunlight irradiation. The configuration, position and solar concentrators can be important for the performance of degradation. The mechanism of degradation was analysed through by-products formation under sunlight irradiation. The main responsible for parabens degradation was hydroxyl radical. Decarboxylation, dealkylation and hydroxylation seem to be the most important reactional steps for the mixture decontamination.

11.
J Colloid Interface Sci ; 549: 212-224, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039457

RESUMO

Due to their photon up-converting capability, lanthanide ions are ideal candidates dopants for semiconductors for developing visible light-driven photocatalytic activity. Of particular relevance, the low luminescence efficiency of Ln-based nanoparticles is one of the main factors that limits their further applications. Carbon, which is present on the surface of all TiO2 photocatalysts, can be responsible for luminescence quenching processes and, thus, decreasing the photocatalytic activity of TiO2. This article presents a systematic experimental and theoretical study of the effects of carbon on the photocatalytic performance of Ho3+-modified TiO2. Ho3+-TiO2 photocatalysts modified with various carbon contents (from 0.5 to 20 mol.%) were successfully prepared using a simple hydrothermal method. As-obtained samples were characterized by UV-Vis diffuse reflectance spectroscopy (DRS/UV-Vis), X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), N2 adsorption measurements, photoluminescent spectroscopy (PL), field-emission scanning electron microscopy (FE-SEM) and scanning transmission microscopy (STEM). The photodegradation efficiency of phenol was estimated for visible light (λ > 420 nm and λ > 455 nm). The XPS and XRD analyses and theoretical calculations revealed that the substitutional doping of holmium and carbon in the TiO2 anatase structure resulted in the appearance of a new sub-band-gap. Changes in the material texture, BET surface area and pore volume can be easily controlled via carbon content in samples. Doping of the Ho3+-TiO2 photocatalysts with carbon resulted in quenching of the emission of Ho3+ and, thus, the photodegradation of phenol, was observed in samples containing smaller amounts of carbon. Sixty minutes of irradiation resulted in 89% of phenol degradation under visible light (λ > 420 nm).

12.
Water Res ; 157: 610-620, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31003076

RESUMO

The efficient and safe degradation of drugs present in wastewater requires the design of a new material possessing high activity for that process. In addition to other methods, photoelectrocatalysis (PEC) merges the strengths of both photocatalytic and electrochemical methods, and the efficiency could be enhanced by the type of photoelectrode material. To address this challenge, three Ti/TiO2 nanotube-based photoelectrodes, differing in their tube morphology, were prepared by anodic oxidation and employed for the degradation of the 5-fluorouracil (5-FU) drug by the PEC process. The highest efficiency for 5-fluorouracil (5-FU) degradation by PEC was observed for the photoelectrode with a 1.7 µm length, 65 nm diameter and 8 nm wall thickness of TiO2 nanotubes, which were prepared by Ti foil anodization at 30 V. The effects of applied potential, irradiation intensity, initial pH and 5-FU concentration on PEC were investigated. Furthermore, our findings showed that the mechanism of photoelectrocatalysis in the presence of TiO2 nanotubes is based on ∙OH and h+ activity. To determine the 5-FU degradation pathway, the organic byproducts were identified by LC-MS analysis. Furthermore, the ecotoxicity evaluated during PEC dropped with decreasing 5-FU concentration.


Assuntos
Fluoruracila , Nanotubos , Eletrodos , Oxirredução , Titânio
13.
Dalton Trans ; 48(5): 1662-1671, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30564826

RESUMO

Novel visible light responsive materials for water splitting are essential for the efficient conversion of solar energy into hydrogen bond energy. Among other semiconductors, gadolinium orthovanadate has appropriate conduction and valence band edges positioned to split water molecules and a narrow band gap that allows the use of visible light for hydrogen generation. Thus, we present here that hydrogen evolution under visible light (λ > 420 nm) could be accomplished using hierarchical 3D GdVO4 particles, obtained by a simple, one pot hydrothermal synthesis. We found that applying various reaction components, such as EDTA-Na2 and EDTA, and adjusting the pH of the solution allow one to tune the shape of GdVO4 (such as short nanowires, long nanowires, short nanorods, long nanorods, nanoparticles and spheres - all having a tetragonal crystal structure) as well as optical and photocatalytic properties. The highest ability to photocatalytically split methanol solution into hydrogen under UV-Vis irradiation was detected for the long nanowire sample (42 µmol h-1), having almost 11 times higher efficiency in comparison with the weakest sample - short nanowires. In addition, GdVO4 spheres generated H2 more than 2 times (5.75 µmol h-1) in comparison with the short nanorod sample (2.5 µmol h-1) under visible light excitation. Photostable in three-hour work cycles, long nanowires and spheres were even able to generate hydrogen from pure water, reaching values of 17 and 3 µmol under UV-Vis and Vis light, respectively.

14.
Beilstein J Nanotechnol ; 9: 447-459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515957

RESUMO

Nd-modified TiO2 photocatalysts have been obtained via hydrothermal (HT) and sol-hydrothermal (SHT) methods. The as-prepared samples were characterized by X-ray diffraction (XRD), BET surface area measurements, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), luminescence spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the synthesized samples was evaluated by the degradation of phenol in aqueous solution under irradiation with UV-vis (λ > 350 nm) and vis (λ > 420 nm) light, as well as by the degradation of gaseous toluene under irradiation with vis (λmax = 415 nm) light. It was found that Nd-modified TiO2 is an efficient photocatalyst for the degradation of phenol and toluene under visible light. XPS analysis revealed that the photocatalyst prepared via HT method contains a three-times higher amount of hydroxy groups at the surface layer and a two-times higher amount of surface defects than that obtained by the SHT method. The photocatalytic efficiency of phenol and toluene degradation under vis irradiation in the presence of 0.25% Nd-TiO2(HT) reached 0.62 and 3.36 µmol·dm-1·min-1, respectively. Photocatalytic activity tests in the presence of Nd-TiO2 and scavenger confirm that superoxide radicals were responsible for the visible light-induced degradation of the model pollutant in aqueous solution.

15.
Molecules ; 22(4)2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362359

RESUMO

Vertically oriented, self-organized TiO2-MnO2 nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λmax = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 µm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO2-MnO2 NTs under visible light was presented, pointing out the importance of MnO2 species for the generation of e- and h⁺.


Assuntos
Compostos de Manganês/química , Nanotubos/química , Óxidos/química , Processos Fotoquímicos/efeitos da radiação , Titânio/química , Tolueno/química , Tolueno/efeitos da radiação , Catálise/efeitos da radiação , Cinética , Nanotubos/ultraestrutura , Espectrofotometria Ultravioleta , Análise Espectral Raman , Difração de Raios X
16.
Molecules ; 22(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379185

RESUMO

V2O5-TiO2 mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30-50 V), vanadium content (5-15 wt %) in the alloy, and water content (2-10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt %) exhibited the best auto-alignment and self-organization (length = 1 µm, diameter = 86 nm and wall thickness = 11 nm). Additionally, a probable growth mechanism of V2O5-TiO2 nanotubes (NTs) over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm) in the presence of the modified TiO2 nanostructures. The highest degradation value was 35% after 60 min of irradiation. V2O5 species were ascribed as the main structures responsible for the generation of photoactive e- and h⁺ under Vis light and a possible excitation mechanism was proposed.


Assuntos
Eletrodos , Nanotubos/química , Oxirredução , Processos Fotoquímicos , Titânio/química , Compostos de Vanádio/química , Ligas , Catálise , Nanotubos/ultraestrutura , Fotólise , Análise Espectral
17.
Appl Surf Sci ; 387: 89-102, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27917012

RESUMO

TiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Agcore-Cushell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...