Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Anat ; 255: 152286, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810763

RESUMO

OBJECTIVES: The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS: Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS: Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1ß (IL-1ß) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION: A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.


Assuntos
Remodelação Óssea , Técnicas de Movimentação Dentária , Humanos , Remodelação Óssea/fisiologia , Osteoclastos/fisiologia , Estresse Mecânico , Osteócitos/fisiologia , Animais , Osteoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...