Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1403769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947319

RESUMO

Introduction: Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods: We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results: Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion: These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.


Assuntos
Hepacivirus , Hepatite C , Células B de Memória , Reinfecção , Células T Auxiliares Foliculares , Humanos , Hepacivirus/imunologia , Células T Auxiliares Foliculares/imunologia , Masculino , Feminino , Hepatite C/imunologia , Hepatite C/virologia , Células B de Memória/imunologia , Adulto , Pessoa de Meia-Idade , Reinfecção/imunologia , Reinfecção/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Memória Imunológica , Anticorpos Anti-Hepatite C/imunologia , Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Ativação Linfocitária/imunologia
2.
PLoS Pathog ; 18(11): e1010968, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36378682

RESUMO

Successive episodes of hepatitis C virus (HCV) infection represent a unique natural rechallenge experiment to define correlates of long-term protective immunity and inform vaccine development. We applied a systems immunology approach to characterize longitudinal changes in the peripheral blood transcriptomic signatures in eight subjects who spontaneously resolved two successive HCV infections. Furthermore, we compared these signatures with those induced by an HCV T cell-based vaccine regimen. We identified a plasma cell transcriptomic signature during early acute HCV reinfection. This signature was absent in primary infection and following HCV vaccine boost. Spontaneous resolution of HCV reinfection was associated with rapid expansion of glycoprotein E2-specifc memory B cells in three subjects and transient increase in E2-specific neutralizing antibodies in six subjects. Concurrently, there was an increase in the breadth and magnitude of HCV-specific T cells in 7 out of 8 subjects. These results suggest a cooperative role for both antibodies and T cells in clearance of HCV reinfection and support the development of next generation HCV vaccines targeting these two arms of the immune system.


Assuntos
Hepatite C , Transcriptoma , Vacinas contra Hepatite Viral , Humanos , Anticorpos Neutralizantes , Hepacivirus , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C , Reinfecção , Proteínas do Envelope Viral
3.
Front Immunol ; 13: 994480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248843

RESUMO

Macrophages are key regulators of inflammation and repair, but their heterogeneity and multiple roles in the liver are not fully understood. We aimed herein to map the intrahepatic macrophage populations and their function(s) during acute liver injury. We used flow cytometry, gene expression analysis, multiplex-immunofluorescence, 3D-reconstruction, and spatial image analysis to characterize the intrahepatic immune landscape in mice post-CCl4-induced acute liver injury during three distinct phases: necroinflammation, and early and late repair. We observed hepatocellular necrosis and a reduction in liver resident lymphocytes during necroinflammation accompanied by the infiltration of circulating myeloid cells and upregulation of inflammatory cytokines. These parameters returned to baseline levels during the repair phase while pro-repair chemokines were upregulated. We identified resident CLEC4F+ Kupffer cells (KCs) and infiltrating IBA1+CLEC4F- monocyte-derived macrophages (MoMFs) as the main hepatic macrophage populations during this response to injury. While occupying most of the necrotic area, KCs and MoMFs exhibited distinctive kinetics, distribution and morphology at the site of injury. The necroinflammation phase was characterized by low levels of KCs and a remarkable invasion of MoMFs suggesting their potential role in phagoctosing necrotic hepatocytes, while opposite kinetics/distribution were observed during repair. During the early repair phase, yolksac - derived KCs were restored, whereas MoMFs diminished gradually then dissipated during late repair. MoMFs interacted with hepatic stellate cells during the necroinflammatory and early repair phases, potentially modulating their activation state and influencing their fibrogenic and pro-repair functions that are critical for wound healing. Altogether, our study reveals novel and distinct spatial and temporal distribution of KCs and MoMFs and provides insights into their complementary roles during acute liver injury.


Assuntos
Células de Kupffer , Fígado , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Fígado/lesões , Fígado/metabolismo , Macrófagos , Camundongos
4.
Cell Mol Gastroenterol Hepatol ; 14(6): 1269-1294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35970323

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. METHODS: We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet-induced NAFLD model in IL22RA knock out mice and their wild-type littermates. RESULTS: Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. CONCLUSIONS: Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Masculino , Camundongos , Animais , Receptores de Interleucina/genética , Transdução de Sinais , Cirrose Hepática , Camundongos Knockout
5.
J Immunol ; 207(4): 1180-1193, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34341170

RESUMO

Hepatitis C virus (HCV) infection resolves spontaneously in ∼25% of acutely infected humans where viral clearance is mediated primarily by virus-specific CD8+ T cells. Previous cross-sectional analysis of the CD8+ TCR repertoire targeting two immunodominant HCV epitopes reported widespread use of public TCRs shared by different subjects, irrespective of infection outcome. However, little is known about the evolution of the public TCR repertoire during acute HCV and whether cross-reactivity to other Ags can influence infectious outcome. In this article, we analyzed the CD8+ TCR repertoire specific to the immunodominant and cross-reactive HLA-A2-restricted nonstructural 3-1073 epitope during acute HCV in humans progressing to either spontaneous resolution or chronic infection and at ∼1 y after viral clearance. TCR repertoire diversity was comparable among all groups with preferential usage of the TCR-ß V04 and V06 gene families. We identified a set of 13 public clonotypes in HCV-infected humans independent of infection outcome. Six public clonotypes used the V04 gene family. Several public clonotypes were long-lived in resolvers and expanded on reinfection. By mining publicly available data, we identified several low-frequency CDR3 sequences in the HCV-specific repertoire matching human TCRs specific for other HLA-A2-restricted epitopes from melanoma, CMV, influenza A, EBV, and yellow fever viruses, but they were of low frequency and limited cross-reactivity. In conclusion, we identified 13 new public human CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of cross-reactive TCRs suggests that they are not major determinants of infectious outcome.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Reinfecção/imunologia , Células Clonais/imunologia , Estudos Transversais , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
7.
PLoS Pathog ; 14(9): e1007290, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222771

RESUMO

Most individuals exposed to hepatitis C virus (HCV) become persistently infected while a minority spontaneously eliminate the virus. Although early immune events influence infection outcome, the cellular composition, molecular effectors, and timeframe of the host response active shortly after viral exposure remain incompletely understood. Employing specimens collected from people who inject drugs (PWID) with high risk of HCV exposure, we utilized RNA-Seq and blood transcriptome module (BTM) analysis to characterize immune function in peripheral blood mononuclear cells (PBMC) before, during, and after acute HCV infection resulting in spontaneous resolution. Our results provide a detailed description of innate immune programs active in peripheral blood during acute HCV infection, which include prominent type I interferon and inflammatory signatures. Innate immune gene expression rapidly returns to pre-infection levels upon viral clearance. Comparative analyses using peripheral blood gene expression profiles from other viral and vaccine studies demonstrate similarities in the immune responses to acute HCV and flaviviruses. Of note, both acute dengue virus (DENV) infection and acute HCV infection elicit similar innate antiviral signatures. However, while transient in DENV infection, this signature was sustained for many weeks in the response to HCV. These results represent the first longitudinal transcriptomic characterization of human immune function in PBMC during acute HCV infection and identify several dynamically regulated features of the complex response to natural HCV exposure.


Assuntos
Hepatite C/genética , Hepatite C/imunologia , Doença Aguda , Adulto , Linfócitos B/imunologia , Dengue/imunologia , Feminino , Hepacivirus/imunologia , Hepacivirus/isolamento & purificação , Hepacivirus/patogenicidade , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Remissão Espontânea , Análise de Sequência de RNA , Transcriptoma , Carga Viral/imunologia , Vacina contra Febre Amarela/imunologia , Adulto Jovem
8.
Immunity ; 48(2): 299-312.e5, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29396160

RESUMO

Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8+ T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8+ T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8+ T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-10/fisiologia , Animais , Antígenos Virais/imunologia , Feminino , Galectinas/fisiologia , Glicosilação , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia
9.
Can Liver J ; 1(2): 78-105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-35990715

RESUMO

The introduction of small molecules targeting viral functions has caused a paradigm shift in hepatitis C virus (HCV) treatment. Administration of these direct-acting antivirals (DAAs) achieves a complete cure in almost all treated patients with short-duration therapy and minimal side effects. Although this is a major improvement over the previous pegylated interferon plus ribavirin (PEG-IFNα/RBV) standard-of-care treatment for HCV, remaining questions address several aspects of the long-term benefits of DAA therapy. Interferon (IFN)-based treatment with successful outcome was associated with substantial reduction in liver disease-related mortality. However, emerging data suggest a complex picture and several confounding factors that influence the effect of both IFN-based and DAA therapies on immune restoration and limiting liver disease progression. We review current knowledge of restoration of innate and HCV-specific immune responses in DAA-mediated viral elimination in chronic HCV infection, and we identify future research directions to achieve long-term benefits in all cured patients and reduce HCV-related liver disease morbidity and mortality.

10.
Sci Rep ; 7(1): 16129, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170442

RESUMO

PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.


Assuntos
Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Fosforilação/genética , Fosforilação/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...