Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(9): 1967-1976.e6, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38626763

RESUMO

In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.


Assuntos
Giberelinas , Giberelinas/metabolismo , Oleaceae/genética , Oleaceae/metabolismo , Oleaceae/crescimento & desenvolvimento , Autoincompatibilidade em Angiospermas/genética , Genoma de Planta , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Mol Ecol Resour ; 21(8): 2629-2644, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33448666

RESUMO

We present DILS, a deployable statistical analysis platform for conducting demographic inferences with linked selection from population genomic data using an Approximate Bayesian Computation framework. DILS takes as input single-population or two-population data sets (multilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying: (a) the best demographic model to study the importance of gene flow and population size change on the genetic patterns of polymorphism and divergence, (b) the best genomic model to determine whether the effective size Ne and migration rate N, m are heterogeneously distributed along the genome (implying linked selection) and (c) loci in genomic regions most associated with barriers to gene flow. Also available via a Web interface, an objective of DILS is to facilitate collaborative research in speciation genomics. Here, we show the performance and limitations of DILS by using simulations and finally apply the method to published data on a divergence continuum composed by 28 pairs of Mytilus mussel populations/species.


Assuntos
Fluxo Gênico , Genoma , Teorema de Bayes , Especiação Genética , Genética Populacional , Genômica , Modelos Genéticos , Densidade Demográfica , Seleção Genética
3.
Mob DNA ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346350

RESUMO

BACKGROUND: Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri. RESULTS: Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either 'recent' or 'old' insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes. CONCLUSION: Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.

4.
Stem Cell Res ; 14(1): 54-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25514344

RESUMO

Pluripotent Embryonic Stem cell (ESC) lines can be derived from a variety of sources. Mouse lines derived from the early blastocyst and from primordial germ cells (PGCs) can contribute to all somatic lineages and to the germ line, whereas cells from slightly later embryos (EpiSC) no longer contribute to the germ line. In chick, pluripotent ESCs can be obtained from PGCs and from early blastoderms. Established PGC lines and freshly isolated blastodermal cells (cBC) can contribute to both germinal and somatic lineages but established lines from the former (cESC) can only produce somatic cell types. For this reason, cESCs are often considered to be equivalent to mouse EpiSC. To define these cell types more rigorously, we have performed comparative microarray analysis to describe a transcriptomic profile specific for each cell type. This is validated by real time RT-PCR and in situ hybridisation. We find that both cES and cBC cells express classic pluripotency-related genes (including cPOUV/OCT4, NANOG, SOX2/3, KLF2 and SALL4), whereas expression of DAZL, DND1, DDX4 and PIWIL1 defines a molecular signature for germ cells. Surprisingly, contrary to the prevailing view, our results also suggest that cES cells resemble mouse ES cells more closely than mouse EpiSC.


Assuntos
Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Blastocisto/citologia , Células Cultivadas , Galinhas , Análise por Conglomerados , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células Germinativas/citologia , Hibridização In Situ , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Componente Principal , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Clin Endocrinol Metab ; 98(10): 4080-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23979958

RESUMO

CONTEXT: Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and scant treatment options. In ACC, no personalized approach has emerged but no extensive molecular screening has been performed to date. OBJECTIVE: The objective of the study was to evaluate the presence of a large number of potentially targetable molecular events in a large cohort of advanced ACC. DESIGN, SETTING, AND PARTICIPANTS: We used hot spot gene sequencing (Ion Torrent, 40 patients) and comparative genomic hybridization (CGH; 28 patients; a subset of the entire cohort) in adult stage III-IV ACC samples to screen for mutations and copy number abnormalities of potential interest for therapeutic use in 46 and 130 genes, respectively. RESULTS: At least one copy number alteration or mutation was found in 19 patients (47.5%). The most frequent mutations were detected on TP53, ATM, and CTNNB1 [6 of 40 (15%), 5 of 40 (12.5%), and 4 of 40 (10%), respectively]. The most frequent copy number alterations identified were: amplification of the CDK4 oncogene (5 of 28; 17.9%) and deletion of the CDKN2A (4 of 28; 14.3%) and CDKN2B (3 of 28; 10.7%) tumor suppressor genes. Amplifications of FGFR1, FGF9, or FRS2 were discovered in three subjects (10.7%). Associated alterations were: deletions of CDKN2A, CDKN2B with ATM mutations, and TP53 mutations with CTNNB1 mutations. CONCLUSIONS: No simple targetable molecular event emerged. Drugs targeting the cell cycle could be the most relevant new therapeutic approach for patients with advanced ACC. Inhibitors of the fibroblast growth factor receptor pathway could also be a therapeutic option in a subset of patients, whereas other targeted therapies should be considered on a case-by-case basis.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/terapia , Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/terapia , Adulto , Idoso , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...