Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1385785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711604

RESUMO

White mold, caused by the necrotrophic fungus Sclerotinia sclerotiorum, is a challenging disease to common bean cultivation worldwide. In the current study, two non-proteinogenic amino acids (NPAAs), γ-aminobutyric acid (GABA) and ß-alanine, were suggested as innovative environmentally acceptable alternatives for more sustainable management of white mold disease. In vitro, GABA and ß-alanine individually demonstrated potent dose-dependent fungistatic activity and effectively impeded the radial growth and development of S. sclerotiorum mycelium. Moreover, the application of GABA or ß-alanine as a seed treatment followed by three root drench applications efficiently decreased the disease severity, stimulated plant growth, and boosted the content of photosynthetic pigments of treated S. sclerotiorum-infected plants. Furthermore, although higher levels of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malondialdehyde (MDA) indicated that S. sclerotiorum infection had markedly triggered oxidative stress in infected bean plants, the exogenous application of both NPAAs significantly reduced the levels of the three studied oxidative stress indicators. Additionally, the application of GABA and ß-alanine increased the levels of both non-enzymatic (total soluble phenolics and flavonoids), as well as enzymatic (catalase [CAT], peroxidases [POX], and polyphenol oxidase [PPO]) antioxidants in the leaves of S. sclerotiorum-infected plants and improved their scavenging activity and antioxidant efficiency. Applications of GABA and ß-alanine also raised the proline and total amino acid content of infected bean plants. Lastly, the application of both NPAAs upregulated the three antioxidant-related genes PvCAT1, PvCuZnSOD1, and PvGR. Collectively, the fungistatic activity of NPAAs, coupled with their ability to alleviate oxidative stress, enhance antioxidant defenses, and stimulate plant growth, establishes them as promising eco-friendly alternatives for white mold disease management for sustainable bean production.

2.
Heliyon ; 9(8): e18453, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560679

RESUMO

This study analyzes the impact of environmental disclosure, board attributes, and firms' specifics on the levels of environmental and ESG performance in Europe and Asia. The study utilizes secondary data from Refinitiv Eikon database for 8094 firms for the period between 2016 and 2021. The study employs panel data analysis using fixed effect models to estimate the results. The findings suggest that disclosure on emissions, innovations, environmental controversies, environmentally friendly products, proactive environmental investments, environmental expenses, and fines charged by authorities have a positive and significant influence on the level of firms' environmental and ESG performance. Furthermore, the study identifies board tenure, independence, size, and meetings as being associated with greater levels of environmental disclosures, reporting, and sustainability score. However, board diversity is found to have a limited contribution to environmental disclosures, especially in Asian countries. Additionally, the results reveal that companies with higher revenue growth, larger size and market capitalization, and better performance have greater and better disclosure of environmental and sustainability issues. The study provides practical implications for policymakers to establish comprehensive guidelines for environmental and sustainability reporting based on the analysis of institutional, regulatory frameworks, legislation, and sustainability score enforcement status of the country.

3.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176833

RESUMO

The important vegetable crop, tomato, is challenged with numerous abiotic and biotic stressors, particularly the newly emerged fungicide-resistant strains of phytopathogenic fungi such as Alternaria alternata, the causal agent of early blight disease. The current study investigated the potential antifungal activity of four cinnamate derivatives including cinnamic acid, ρ-coumaric acid, caffeic acid, and ferulic acid against A. alternata. Our in vitro findings showed that all tested compounds exhibited dose-dependent fungistatic action against A. alternata when their concentrations were increased from 0.1, 0.3, 0.5, and 0.7, to 0.9 mM, respectively. The high concentration of ferulic acid (0.9 mM) completely inhibited the radial mycelial growth of A. alternata and it was comparable to the positive control (difenoconazole fungicide). Additionally, under greenhouse conditions, foliar application of the four tested cinnamates significantly reduced the severity of early blight disease without any phytotoxicity on treated tomato plants. Moreover, it significantly improved the growth traits (plant height, total leaf area, number of leaves per plant, and shoot fresh weight), total chlorophyll, and yield components (number of flowers per plant, number of fruits per plant, and fruit yield) of treated A. alternata-infected plants. Collectively, our findings suggest that cinnamate derivatives could be good candidates as eco-friendly alternatives to reduce the use of chemical fungicides against A. alternata.

4.
J Fungi (Basel) ; 8(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36294606

RESUMO

Wheat stem rust caused by Puccinia graminis f. sp. tritici is one of the most destructive wheat diseases worldwide. Identifying stem rust races in general, Ug99 lineage particularly, and determining resistance genes are critical goals for disease assessment. Thirty wheat varieties and monogenic lines with major stem rust resistance genes (Sr) were examined here over the course of three succeeding seasons from 2020 to 2022. Fourteen stem rust races have been identified in ten African countries, as well as Central and West Asia and North Africa (CWANA) and ten European countries. The Ug99 group (Clade I) included four races (TTKSK, TTKST, TTKTK, and TTKTT) and was reported in five African countries (Egypt, Kenya, Rwanda, Tanzania, and Uganda) and Iran, but none of the European countries. On the other hand, none of the races in Clade III-B (TTRTF) and Clade IV-B (TKTTF and TTTTF) were found in Egypt. Furthermore, Egyptian races were clustered separately from races identified from other countries, and six races were found only in Egypt, including PKSTC, RKTTH, TKTTC, TTTSK, TCKTC, and TKTTH. Races from Kenya, Tanzania, Uganda, Rwanda, and Iran were all closely associated with one another, according to correlation analysis. However, most races identified from other investigated regions, including Eritrea, Spain, Ethiopia, Morocco, Italy, Poland, Kenya, Tanzania, and Uganda, were adversely linked with Egyptian races. The diagnostic 350 bp long PCR fragment linked with virulence to Sr31, Clement (Sr31), and Brigardier (Sr31) was used to identify the TTKSK (Ug99) race. The identification of the regional associations and genetic diversity of newly emerged races within the Ug99 lineage of P. graminis tritici in Africa, Asia, and Europe is one of the key goals of this study. It will help plant breeders to develop new resistant lines against the virulent races, especially TTKSK (Ug99) and TTTSK. This helps in ensuring global food security in the context of climate change.

5.
J Fungi (Basel) ; 8(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736109

RESUMO

The genus Aspergillus comprises several species that play pivotal roles in agriculture. Herein, we morphologically and physiologically characterized four genetically distinct Aspergillus spp., namely A. japonicus, A. niger, A. flavus, and A. pseudoelegans, and examined their ability to suppress the white mold disease of bean caused by Sclerotinia sclerotiorum in vitro and under greenhouse conditions. Seriation type of Aspergillus spp. correlates with conidiospores discharge as detected on the Petri glass lid. Members of Nigri section cover their conidial heads with hard shells after prolonged incubation. In addition, sporulation of the tested Aspergillus isolates is temperature sensitive as it becomes inhibited at low temperatures and the colonies become white. Examined Aspergillus spp. were neither infectious to legumes nor aflatoxigenic as confirmed by HPLC except for A. flavus and A. pseudoelegans which, secreted 5 and 1 ppm of aflatoxin B1, respectively. Co-inoculations of Sclerotinia's mycelium or sclerotia with a spore suspension of Aspergillus spp. inhibited their germination on PDA at 18 °C and 28 °C, and halted disease onset on detached common bean and soybean leaves. Similarly, plants treated with A. japonicus and A. niger showed the highest survival rates compared to untreated plants. In conclusion, black Aspergillus spp. are efficient biocides and safe alternatives for the management of plant diseases, particularly in organic farms.

7.
Plants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34961229

RESUMO

The phytopathogenic basidiomycetous fungus, Rhizoctonia solani, has a wide range of host plants including members of the family Poaceae, causing damping-off and root rot diseases. In this study, we biosynthesized spherical-shaped silicon dioxide nanoparticles (SiO2 NPs; sized between 9.92 and 19.8 nm) using saffron extract and introduced them as a potential alternative therapeutic solution to protect wheat seedlings against R. solani. SiO2 NPs showed strong dose-dependent fungistatic activity on R. solani, and significantly reduced mycelial radial growth (up to 100% growth reduction), mycelium fresh and dry weight, and pre-, post-emergence damping-off, and root rot severities. Moreover, the impact of SiO2 NPs on the growth of wheat seedlings and their potential mechanism (s) for disease suppression was deciphered. SiO2 NPs application also improved the germination, vegetative growth, and vigor indexes of infected wheat seedlings which indicates no phytotoxicity on treated wheat seedlings. Moreover, SiO2 NPs enhanced the content of the photosynthetic pigments (chlorophylls and carotenoids), induced the accumulation of defense-related compounds (particularly salicylic acid), and alleviated the oxidative stress via stimulation of both enzymatic (POD, SOD, APX, CAT, and PPO) and non-enzymatic (phenolics and flavonoids) antioxidant defense machinery. Collectively, our findings demonstrated the potential therapeutic role of SiO2 NPs against R. solani infection via the simultaneous activation of a multilayered defense system to suppress the pathogen, neutralize the destructive effect of ROS, lipid peroxidation, and methylglyoxal, and maintain their homeostasis within R. solani-infected plants.

8.
Plants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834622

RESUMO

Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers. Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 'R'.

9.
Plants (Basel) ; 10(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34579492

RESUMO

The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar) significantly improved the soil ecosystem and physicochemical properties and K+, Ca2+, and Mg2+ contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4+ g-1 dry soil d-1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g-1 dry soil d-1) in 2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control. PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar > PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS), relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment. These findings could be guidelines for cultivating not only maize but other cereal crops particularly in salt-affected soil and sodic-saline soil.

10.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572068

RESUMO

Cryptosporidiosis is caused by an opportunistic protozoan parasite (Cryptosporidium parvum and C. hominis) known as a parasite of humans, especially children and immunocompromised patients. The current study was designed to evaluate the therapeutic efficacy of a mixture of fig and olive leaf extracts as an alternative medicinal plant. Parasitological examination for oocysts in the stool and histopathological alterations in the small intestines were examined. Additionally, biochemical analyses of liver and kidney functions in addition to antioxidant parameters such as superoxide dismutase (SOD), glutathione peroxidase (GSH) and catalase (CAT) in the plasma were evaluated. Our results showed that marked reduction in oocysts shedding and amelioration in intestinal histopathological changes and hepatic or renal functions were detected in all treated groups compared to the control infected group. Additionally, the treated groups with tested extracts at ratios 1:3 and 1:5 showed a significant decrease in the number of oocysts compared to the other treated groups. Results exhibited a significant increase in the plasma SOD, CAT and GSH levels in treated groups compared to the infected control one. This study suggested that a mixture of fig and olive leaf extracts is a convenient promising therapeutic agent for Cryptosporidiosis.


Assuntos
Antioxidantes/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Ficus/química , Imunossupressores/farmacologia , Olea/química , Extratos Vegetais/farmacologia , Animais , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Criptosporidiose/patologia , Hospedeiro Imunocomprometido , Masculino , Camundongos , Estresse Oxidativo , Folhas de Planta/química
11.
Plants (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451738

RESUMO

Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 µM and 100 µM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.

12.
Plants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009081

RESUMO

Phenotypic plasticity is frequently highlighted as a key factor in plant invasiveness, as it enables invasive species to adapt to diverse, complicated habitats. Trianthema portulacastrum is one of the most common aggressive species that threaten different crops around the world. Phenotypic plasticity in T. portulacastrum was investigated by comparing variation in germination, vegetative macromorphology, photosynthetic pigments, stomatal complexes, and seed micromorphological traits of 35 samples collected from 35 different localities. One-way cluster analysis and principal component analysis (PCA) were used to classify samples into homogeneous groups based on the measured traits. Pairwise statistical comparisons were conducted between the three resulting groups. The phenotypic plasticity index (PI) was calculated and compared among different groups of characters. Results showed that photosynthetic pigments and macromorphological characteristics had the highest PI, followed by seed micromorphology, and then stomatal complex traits, while germination parameters showed the lowest PI. We propose that soil moisture, salinity, and temperature are the most determinative and explanative variables of the variation between the three classified groups. We strongly believe that the phenotypic plasticity of T. portulacastrum will support species abundance and spread even under expected changes in climatic conditions, in contrast to the vulnerable traditional crops.

13.
Plants (Basel) ; 9(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532054

RESUMO

Silicon is one of the most significant elements in plants under abiotic stress, so we investigated the role of silicon in alleviation of the detrimental effects of salinity at two concentrations (1500 and 3000 ppm sodium chloride) in sweet pepper plants in two seasons (2018 and 2019). Our results indicated that relative water content, concentrations of chlorophyll a and b, nitrogen, phosphorus and potassium contents, number of fruits plant-1, fruit fresh weight plant-1 (g) and fruit yield (ton hectare-1) significantly decreased in salt-stressed sweet pepper plants as compared to control plants. In addition, electrolyte leakage, proline, lipid peroxidation, superoxide (O2-) and hydrogen peroxide (H2O2) levels, soluble sugars, sucrose, and starch content as well as sodium content significantly increased under salinity conditions. Conversely, foliar application of silicon led to improvements in concentrations of chlorophyll a and b and mineral nutrients, water status, and fruit yield of sweet pepper plants. Furthermore, lipid peroxidation, electrolyte leakage, levels of superoxide, and hydrogen peroxide were decreased with silicon treatments.

14.
Plants (Basel) ; 9(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244604

RESUMO

Chilling, a sort of cold stress, is a typical abiotic ecological stress that impacts the development as well as the growth of crops. The present study was carried to investigate the role of ascorbic acid root priming in enhancing tolerance of tomato seedlings against acute chilling stress. The treatments included untreated control, ascorbic acid-treated plants (AsA; 0.5 mM), acute chilling-stressed plants (4 °C), and chilling stressed seedlings treated by ascorbic acid. Exposure to acute chilling stress reduced growth in terms of length, fresh and dry biomass, pigment synthesis, and photosynthesis. AsA was effective in mitigating the injurious effects of chilling stress to significant levels when supplied at 0.5 mM concentrations. AsA priming reduced the chilling mediated oxidative damage by lowering the electrolyte leakage, lipid peroxidation, and hydrogen peroxide. Moreover, up regulating the activity of enzymatic components of the antioxidant system. Further, 0.5 mM AsA proved beneficial in enhancing ions uptake in normal and chilling stressed seedlings. At the gene expression level, AsA significantly lowered the expression level of CAT and heat shock protein genes. Therefore, we theorize that the implementation of exogenous AsA treatment reduced the negative effects of severe chilling stress on tomato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...