Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812022

RESUMO

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Assuntos
Acanthamoeba castellanii , Técnicas de Cocultura , Células Epiteliais , Epitélio Corneano , Peptídeo Hidrolases , Humanos , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/genética , Células Epiteliais/parasitologia , Epitélio Corneano/parasitologia , Epitélio Corneano/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Ceratite por Acanthamoeba/parasitologia , Serina Proteases/metabolismo , Serina Proteases/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Virulência
2.
Front Microbiol ; 14: 1175469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180263

RESUMO

Background: In vitro models for studying interactions between Acanthamoeba and host cells are crucial for understanding the pathomechanism of Acanthamoeba and assessing differences between strains and cell types. The virulence of Acanthamoeba strains is usually assessed and monitored by using cell cytotoxicity assays. The aim of the present study was to evaluate and compare the most widely used cytotoxicity assays for their suitability to assess Acanthamoeba cytopathogenicity. Methods: The viability of human corneal epithelial cells (HCECs) after co-culture with Acanthamoeba was evaluated in phase contrast microscopy. Results: It was shown that Acanthamoeba is unable to considerably reduce the tetrazolium salt and the NanoLuc® Luciferase prosubstrate to formazan and the luciferase substrate, respectively. This incapacity helped to generate a cell density-dependent signal allowing to accurately quantify Acanthamoeba cytotoxicity. The lactate dehydrogenase (LDH) assay led to an underestimation of the cytotoxic effect of Acanthamoeba on HCECs since their co-incubation negatively affected the lactate dehydrogenase activity. Discussion: Our findings demonstrate that cell-based assays using the aqueous soluble tetrazolium-formazan, and the NanoLuc® Luciferase prosubstrate products, in contrast to LDH, are excellent markers to monitor the interaction of Acanthamoeba with human cell lines and to determine and quantify effectively the cytotoxic effect induced by the amoebae. Furthermore, our data indicate that protease activity may have an impact on the outcome and thus the reliability of these tests.

3.
Methods Mol Biol ; 2542: 41-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008655

RESUMO

Candida albicans is a normal component of the human microflora that colonizes mucosal/epithelial surfaces and the gastrointestinal tract as a commensal organism. However, in an immunocompromised host, it can cause life-threatening infections of high mortality and morbidity. Virulence as well as antifungal drug resistance of C. albicans is often regulated by posttranslational modifications (PTM) of proteins via lysine acetylation by lysine acetyltransferases. Here, we report an experimental approach using tandem mass tag (TMT) labeling for the detection and quantification of lysine acetylation of histone and nonhistone proteins in C. albicans.


Assuntos
Candida albicans , Lisina , Acetilação , Candida albicans/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica
4.
Antimicrob Agents Chemother ; 66(6): e0227621, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652307

RESUMO

Candida auris is an emerging multidrug-resistant human fungal pathogen often refractory to treatment by all classes of antifungal drugs. Amphotericin B (AmB) is a fungicidal drug that, despite its toxic side effects, remains a drug of choice for the treatment of drug-resistant fungal infections, including those caused by C. auris. However, the molecular mechanisms underlying AmB resistance are poorly understood. In this study, we present data that suggests membrane lipid alterations and chromatin modifications are critical processes that may contribute to or cause adaptive AmB resistance in clinical C. auris isolates. To determine the plausible cause of increased AmB resistance, we performed RNA-seq of AmB-resistant and sensitive C. auris isolates. Remarkably, AmB-resistant strains show a pronounced enrichment of genes involved in lipid and ergosterol biosynthesis, adhesion, drug transport as well as chromatin remodeling. The transcriptomics data confirm increased adhesion and reduced lipid membrane permeability of AmB-resistant strains compared to the sensitive isolates. The AmB-resistant strains also display hyper-resistance to cell wall perturbing agents, including Congo red, calcofluor white and caffeine. Additionally, we noticed an increased phosphorylation of Mkc1 cell integrity MAP kinase upon AmB treatment. Collectively, these data identify differences in the transcriptional landscapes of AmB-resistant versus AmB-sensitive isolates and provide a framework for the mechanistic understanding of AmB resistance in C. auris.


Assuntos
Anfotericina B , Candidíase , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida auris , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica/genética , Humanos , Lipídeos , Testes de Sensibilidade Microbiana , Transcriptoma/genética
5.
mSphere ; 5(5)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055262

RESUMO

Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs.IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Parede Celular/fisiologia , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Adaptação Fisiológica , Candidíase/microbiologia , Farmacorresistência Fúngica Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Virulência
6.
PLoS One ; 14(2): e0212429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807611

RESUMO

The exoproteome of parasitic protists constitutes extracellular proteins that play a fundamental role in host-parasite interactions. Lytic factors, especially secreted proteases, are capable of modulating tissue invasion, thereby aggravating host susceptibility. Despite the important role of exoproteins during infection, the exoproteomic data on Histomonas meleagridis are non-existent. The present study employed traditional 1D-in-gel-zymography (1D-IGZ) and micro-LC-ESI-MS/MS (shotgun proteomics), to investigate H. meleagridis exoproteomes, obtained from a clonal virulent and an attenuated strain. Both strains were maintained as mono-eukaryotic monoxenic cultures with Escherichia coli. We demonstrated active in vitro secretion kinetics of proteases by both parasite strains, with a widespread proteolytic activity ranging from 17 kDa to 120 kDa. Based on protease inhibitor susceptibility assay, the majority of proteases present in both exoproteomes belonged to the family of cysteine proteases and showed stronger activity in the exoproteome of a virulent H. meleagridis. Shotgun proteomics, aided by customized database search, identified 176 proteins including actin, potential moonlighting glycolytic enzymes, lytic molecules such as pore-forming proteins (PFPs) and proteases like cathepsin-L like cysteine protease. To quantify the exoproteomic differences between the virulent and the attenuated H. meleagridis cultures, a sequential window acquisition of all theoretical spectra mass spectrometric (SWATH-MS) approach was applied. Surprisingly, results showed most of the exoproteomic differences to be of bacterial origin, especially targeting metabolism and locomotion. By deciphering such molecular signatures, novel insights into a complex in vitro protozoan- bacteria relationship were elucidated.


Assuntos
Parabasalídeos/genética , Parabasalídeos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Exopeptidases/genética , Exopeptidases/metabolismo , Interações Hospedeiro-Parasita/genética , Parabasalídeos/patogenicidade , Aves Domésticas , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia , Mapas de Interação de Proteínas , Proteoma/genética , Proteômica , Infecções Protozoárias em Animais/microbiologia , Infecções Protozoárias em Animais/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Virulência/genética
7.
Protist ; 168(6): 663-685, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107797

RESUMO

The protozoan flagellate Histomonas meleagridis is the causative agent of histomonosis in poultry. In turkeys, high mortality might be noticed whereas in chickens the disease is less severe despite production losses. Discovered over a century ago, molecular data on this parasite are scarce and genetic studies are in its infancy. To expand genomic information, a de novo transcriptome sequencing of H. meleagridis was performed from a virulent and an attenuated strain, cultivated in vitro as monoxenic mono-eukaryotic culture. Normalized cDNA libraries were prepared and sequenced on Roche 454 GS FLX resulting in 1.17 million reads with an average read length of 458bp. Sequencing reads were assembled into two sets of >4500 contigs, which were further integrated to establish a reference transcriptome for H. meleagridis consisting of 3356 contigs. Following gene ontology analysis, data mining provided novel biological insights into proteostasis, cytoskeleton, metabolism, environmental adaptation and potential pathogenic mechanisms of H. meleagridis. Finally, the transcriptome data was used to perform an in silico drug screen to identify potential anti-histomonal drugs. Altogether, data recruited from virulent and attenuated parasites facilitate a better understanding of the parasites' molecular biology aiding the development of novel diagnostics and future research.


Assuntos
Antitricômonas/análise , Genes de Protozoários/genética , Infecções Protozoárias em Animais/parasitologia , Transcriptoma , Trichomonadida/genética , Perus , Animais , Simulação por Computador , Descoberta de Drogas , Infecções Protozoárias em Animais/tratamento farmacológico , Análise de Sequência de DNA/veterinária , Trichomonadida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...