Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orthop Surg ; 9(1): 13-19, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28276640

RESUMO

Stem cell research has been a popular topic in the past few decades. This review aims to discuss factors that help regulate, induce, and enhance mesenchymal stem cell (MSC) differentiation into osteoblasts for bone regeneration. The factors analyzed include bone morphogenic protein (BMP), transforming growth factor ß (TGF-ß), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor type 1 (IGF-1), histone demethylase JMJD3, cyclin dependent kinase 1 (CDK1), fucoidan, Runx2 transcription factor, and TAZ transcriptional coactivator. Methods promoting bone healing are also evaluated in this review that have shown promise in previous studies. Methods tested using animal models include low intensity pulsed ultrasound (LIPUS) with MSC, micro motion, AMD3100 injections, BMP delivery, MSC transplantation, tissue engineering utilizing scaffolds, anti-IL-20 monoclonal antibody, low dose photodynamic therapy, and bone marrow stromal cell transplants. Human clinical trial methods analyzed include osteoblast injections, bone marrow grafts, bone marrow and platelet rich plasma transplantation, tissue engineering using scaffolds, and recombinant human BMP-2. These methods have been shown to promote and accelerate new bone formation. These various methods for enhanced bone regeneration have the potential to be used, following further research, in clinical practice.


Assuntos
Regeneração Óssea/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Transplante de Medula Óssea/métodos , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/terapia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Osteoblastos/transplante , Terapia por Ultrassom/métodos
2.
Ther Adv Musculoskelet Dis ; 9(3): 67-74, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28344668

RESUMO

As the prevalence of diabetes is increasing worldwide, research on some of the lesser-known effects, including impaired bone health, are gaining a lot of attention. The two most common forms of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). These two differ in their physiology, with T1DM stemming from an inability to produce insulin, and T2DM involving an insufficient response to the insulin that is produced. This review aims to highlight the most current information regarding diabetes as it relates to bone health. It looks at biochemical changes that characterize diabetic bone; notably increased adiposity, altered bone metabolism, and variations in bone mineral density (BMD). Then several hypotheses are analyzed, concerning how these changes may be detrimental to the highly orchestrated processes that are involved in bone formation and turnover, and ultimately result in the distinguishing features of diabetic bone. The review proceeds by explaining the effects of antidiabetes medications on bone health, then highlighting several ways that diabetes can play a part in other clinical treatment outcomes. With diabetes negatively affecting bone health and creating other clinical problems, and its treatment options potentiating these effects, physicians should consider the use of anti-osteoporotic drugs to supplement standard anti-diabetes medications in patients suffering with diabetic bone loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...