Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neurosurgery ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833559

RESUMO

BACKGROUND AND OBJECTIVES: Health care providers' exposure to global surgical disparities is limited in current nursing and/or medical school curricula. For instance, global health is often associated with infectious diseases or maternal health without acknowledging the growing need for surgical care in low- and middle-income countries (LMICs). We propose an international virtual hackathon based on neurosurgical patient cases in under-resourced settings as an educational tool to bring awareness to global surgical disparities and develop relationships among trainees in different countries. METHODS: Participants were recruited through email listservs, a social media campaign, and prize offerings. A 3-day virtual hackathon event was administered, which included workshops, mentorship, keynote panels, and pitch presentations to judges. Participants were presented with real patient cases and directed to solve a barrier to their care. Surveys assessed participants' backgrounds and event experience. The hackathon was executed through Zoom at Harvard Innovation Lab in Boston, MA, on March 25 to 27, 2022. Participants included medical students, with additional participants from business, engineering, or current health care workers. RESULTS: Three hundred seven applications were submitted for 100 spots. Participants included medical students, physicians, nurses, engineers, entrepreneurs, and undergraduates representing 25 countries and 82 cities. Fifty-one participants previously met a neurosurgeon, while 39 previously met a global health expert, with no difference between LMIC and high-income countries' respondents. Teams spent an average of 2.75 hours working with mentors, and 88% of postevent respondents said the event was "very" or "extremely conducive" to networking. Projects fell into 4 categories: access, language barriers, education and training, and resources. The winning team, which was interdisciplinary and international, developed an application that analyzes patient anatomy while performing physical therapy to facilitate remote care and clinical decision-making. CONCLUSION: An international virtual hackathon can be an educational tool to increase innovative ideas to address surgical disparities in LMICs and establish early collaborative relationships with medical trainees from different countries.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38702066

RESUMO

BACKGROUND AND PURPOSE: Imaging stewardship in the emergency department (ED) is vital in ensuring patients receive optimized care. While suspected cord compression (CC) is a frequent indication for total spine MRI in the ED, the incidence of CC is low. Recently, our level-I trauma center introduced a survey spine MRI protocol to evaluate for suspected CC while reducing exam time to avoid imaging overutilization. This study aims to evaluate the time savings, frequency of ordering patterns of the survey, and the symptoms and outcomes of patients undergoing the survey. MATERIALS AND METHODS: This retrospective study examined patients who received a survey spine MRI in the ED at our institution between 2018 and 2022. All exams were performed on a 1.5T GE scanner using our institutional CC survey protocol, which includes sagittal T2 and STIR sequences through the cervical, thoracic, and lumbar spine. Exams were read by a blinded, board-certified neuroradiologist. RESULTS: A total of 2,002 patients received a survey spine MRI protocol during the study period. Of these patients, 845 (42.2%, mean age 57 ± 19 years, 45% female) received survey spine MRI exams for the suspicion of CC, and 120 patients (14.2% positivity rate) had radiographic CC. The survey spine MRI averaged 5 minutes and 50 seconds (79% faster than routine MRI). On multivariate analysis, trauma, back pain, lower extremity weakness, urinary or bowel incontinence, numbness, ataxia, and hyperreflexia were each independently associated with CC. Of the 120 patients with CC, 71 underwent emergent surgery, 20 underwent non-emergent surgery, and 29 were managed medically. CONCLUSIONS: The survey spine protocol was positive for CC in 14% of patients in our cohort and acquired at a 79% faster rate compared to routine total spine. Understanding the positivity rate of CC, the clinical symptoms that are most associated with CC, and the subsequent care management for patients presenting with suspected cord compression who received the survey spine MRI may better inform the broad adoption and subsequent utilization of survey imaging protocols in emergency settings to increase throughput, improve allocation of resources, and provide efficient care for patients with suspected CC.ABBREVIATIONS: CC, cord compression; ED, emergency department; MRI, magnetic resonance imaging; T2; T2-weighted imaging sequence; STIR, short TI inversion recovery.

3.
Acad Radiol ; 31(2): 417-425, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38401987

RESUMO

RATIONALE AND OBJECTIVES: Innovation is a crucial skill for physicians and researchers, yet traditional medical education does not provide instruction or experience to cultivate an innovative mindset. This study evaluates the effectiveness of a novel course implemented in an academic radiology department training program over a 5-year period designed to educate future radiologists on the fundamentals of medical innovation. MATERIALS AND METHODS: A pre- and post-course survey and examination were administered to residents who participated in the innovation course (MESH Core) from 2018 to 2022. Respondents were first evaluated on their subjective comfort level, understanding, and beliefs on innovation-related topics using a 5-point Likert-scale survey. Respondents were also administered a 21-question multiple-choice exam to test their objective knowledge of innovation-related topics. RESULTS: Thirty-eight residents participated in the survey (response rate 95%). Resident understanding, comfort and belief regarding innovation-related topics improved significantly (P < .0001) on all nine Likert-scale questions after the course. After the course, a significant majority of residents either agreed or strongly agreed that technological innovation should be a core competency for the residency curriculum, and that a workshop to prototype their ideas would be beneficial. Performance on the course exam showed significant improvement (48% vs 86%, P < .0001). The overall course experience was rated 5 out of 5 by all participants. CONCLUSION: MESH Core demonstrates long-term success in educating future radiologists on the basic concepts of medical technological innovation. Years later, residents used the knowledge and experience gained from MESH Core to successfully pursue their own inventions and innovative projects. This innovation model may serve as an approach for other institutions to implement training in this domain.


Assuntos
Educação de Pós-Graduação em Medicina , Internato e Residência , Humanos , Educação de Pós-Graduação em Medicina/métodos , Competência Clínica , Currículo , Radiologistas , Hospitais
4.
Stroke ; 54(11): 2832-2841, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795593

RESUMO

BACKGROUND: Neuroimaging is essential for detecting spontaneous, nontraumatic intracerebral hemorrhage (ICH). Recent data suggest ICH can be characterized using low-field magnetic resonance imaging (MRI). Our primary objective was to investigate the sensitivity and specificity of ICH on a 0.064T portable MRI (pMRI) scanner using a methodology that provided clinical information to inform rater interpretations. As a secondary aim, we investigated whether the incorporation of a deep learning (DL) reconstruction algorithm affected ICH detection. METHODS: The pMRI device was deployed at Yale New Haven Hospital to examine patients presenting with stroke symptoms from October 26, 2020 to February 21, 2022. Three raters independently evaluated pMRI examinations. Raters were provided the images alongside the patient's clinical information to simulate real-world context of use. Ground truth was the closest conventional computed tomography or 1.5/3T MRI. Sensitivity and specificity results were grouped by DL and non-DL software to investigate the effects of software advances. RESULTS: A total of 189 exams (38 ICH, 89 acute ischemic stroke, 8 subarachnoid hemorrhage, 3 primary intraventricular hemorrhage, 51 no intracranial abnormality) were evaluated. Exams were correctly classified as positive or negative for ICH in 185 of 189 cases (97.9% overall accuracy). ICH was correctly detected in 35 of 38 cases (92.1% sensitivity). Ischemic stroke and no intracranial abnormality cases were correctly identified as blood-negative in 139 of 140 cases (99.3% specificity). Non-DL scans had a sensitivity and specificity for ICH of 77.8% and 97.1%, respectively. DL scans had a sensitivity and specificity for ICH of 96.6% and 99.3%, respectively. CONCLUSIONS: These results demonstrate improvements in ICH detection accuracy on pMRI that may be attributed to the integration of clinical information in rater review and the incorporation of a DL-based algorithm. The use of pMRI holds promise in providing diagnostic neuroimaging for patients with ICH.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Tomografia Computadorizada por Raios X , Hemorragia Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Imageamento por Ressonância Magnética
5.
J Neurosurg ; 139(6): 1664-1670, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347618

RESUMO

OBJECTIVE: Low-field portable MRI (pMRI) is a recent technological advancement with potential for broad applications. Compared with conventional MRI, pMRI is less resource-intensive with regard to operational costs and scan time. The application of pMRI in neurosurgical oncology has not been previously described. The goal of this study was to demonstrate the efficacy of pMRI in assessing optic nerve decompression after endoscopic endonasal surgery for sellar and suprasellar pathologies. METHODS: Patients who underwent endoscopic endonasal surgery for sellar and suprasellar lesions at a single institution and for whom pMRI and routine MRI were performed postoperatively were retrospectively reviewed to compare the two imaging systems. To assess the relative resolution of pMRI compared with MRI, the distance from the optic chiasm to the top of the third ventricle was measured, and the measurements were compared between paired equivalent slices on T2-weighted coronal images. The inter- and intrarater correlations were analyzed. RESULTS: Twelve patients were included in this study (10 with pituitary adenomas and 2 with craniopharyngiomas) with varying degrees of optic chiasm compression on preoperative imaging. Measurements were averaged across raters before calculating agreement between pMRI and MRI, which demonstrated significant interrater reliability (intraclass correlation coefficient [ICC] = 0.78, p < 0.01). Agreement between raters within the pMRI measurements was also significantly reliable (ICC = 0.93, p < 0.01). Finally, a linear mixed-effects model was specified to demonstrate that MRI measurement could be predicted using the pMRI measurement with the patient and rater set as random effects (pMRI ß coefficient = 0.80, p < 0.01). CONCLUSIONS: The results of this study suggest that resolution of pMRI is comparable to that of conventional MRI in assessing the optic chiasm position in relation to the third ventricle. Portable MRI sufficiently demonstrates decompression of the optic chiasm after endoscopic endonasal surgery. It can be an alternative strategy in cases in which cost, scan-time considerations, or lack of intraoperative MRI availability may preclude the ability to assess adequate optic nerve decompression after endoscopic endonasal surgery for sellar and suprasellar lesions.


Assuntos
Quiasma Óptico , Neoplasias Hipofisárias , Humanos , Quiasma Óptico/diagnóstico por imagem , Quiasma Óptico/cirurgia , Quiasma Óptico/patologia , Estudos Retrospectivos , Reprodutibilidade dos Testes , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/patologia , Imageamento por Ressonância Magnética , Descompressão
6.
J Am Heart Assoc ; 12(11): e029242, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218590

RESUMO

Background White matter hyperintensity (WMH) on magnetic resonance imaging (MRI) of the brain is associated with vascular cognitive impairment, cardiovascular disease, and stroke. We hypothesized that portable magnetic resonance imaging (pMRI) could successfully identify WMHs and facilitate doing so in an unconventional setting. Methods and Results In a retrospective cohort of patients with both a conventional 1.5 Tesla MRI and pMRI, we report Cohen's kappa (κ) to measure agreement for detection of moderate to severe WMH (Fazekas ≥2). In a subsequent prospective observational study, we enrolled adult patients with a vascular risk factor being evaluated in the emergency department for a nonstroke complaint and measured WMH using pMRI. In the retrospective cohort, we included 33 patients, identifying 16 (49.5%) with WMH on conventional MRI. Between 2 raters evaluating pMRI, the interrater agreement on WMH was strong (κ=0.81), and between 1 rater for conventional MRI and the 2 raters for pMRI, intermodality agreement was moderate (κ=0.66, 0.60). In the prospective cohort we enrolled 91 individuals (mean age, 62.6 years; 53.9% men; 73.6% with hypertension), of which 58.2% had WMHs on pMRI. Among 37 Black and Hispanic individuals, the Area Deprivation Index was higher (versus White, 51.8±12.9 versus 37.9±11.9; P<0.001). Among 81 individuals who did not have a standard-of-care MRI in the preceding year, we identified WMHs in 43 of 81 (53.1%). Conclusions Portable, low-field imaging could be useful for identifying moderate to severe WMHs. These preliminary results introduce a novel role for pMRI outside of acute care and the potential role for pMRI to reduce disparities in neuroimaging.


Assuntos
Substância Branca , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Prospectivos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética
7.
Neurology ; 100(22): 1067-1071, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-36720639

RESUMO

In the 20th century, the advent of neuroimaging dramatically altered the field of neurologic care. However, despite iterative advances since the invention of CT and MRI, little progress has been made to bring MR neuroimaging to the point of care. Recently, the emergence of a low-field (<1 T) portable MRI (pMRI) is setting the stage to revolutionize the landscape of accessible neuroimaging. Users can transport the pMRI into a variety of locations, using a standard 110-220 V wall outlet. In this article, we discuss current applications for pMRI, including in the acute and critical care settings, the barriers to broad implementation, and future opportunities.


Assuntos
Imageamento por Ressonância Magnética , Neurologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Neurologia/história
8.
Ann Neurol ; 92(4): 574-587, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689531

RESUMO

Brain imaging is essential to the clinical care of patients with stroke, a leading cause of disability and death worldwide. Whereas advanced neuroimaging techniques offer opportunities for aiding acute stroke management, several factors, including time delays, inter-clinician variability, and lack of systemic conglomeration of clinical information, hinder their maximal utility. Recent advances in deep machine learning (DL) offer new strategies for harnessing computational medical image analysis to inform decision making in acute stroke. We examine the current state of the field for DL models in stroke triage. First, we provide a brief, clinical practice-focused primer on DL. Next, we examine real-world examples of DL applications in pixel-wise labeling, volumetric lesion segmentation, stroke detection, and prediction of tissue fate postintervention. We evaluate recent deployments of deep neural networks and their ability to automatically select relevant clinical features for acute decision making, reduce inter-rater variability, and boost reliability in rapid neuroimaging assessments, and integrate neuroimaging with electronic medical record (EMR) data in order to support clinicians in routine and triage stroke management. Ultimately, we aim to provide a framework for critically evaluating existing automated approaches, thus equipping clinicians with the ability to understand and potentially apply DL approaches in order to address challenges in clinical practice. ANN NEUROL 2022;92:574-587.


Assuntos
Aprendizado Profundo , Acidente Vascular Cerebral , Humanos , Redes Neurais de Computação , Neuroimagem/métodos , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
9.
Resuscitation ; 176: 150-158, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35562094

RESUMO

BACKGROUND: Assessment of brain injury severity is critically important after survival from cardiac arrest (CA). Recent advances in low-field MRI technology have permitted the acquisition of clinically useful bedside brain imaging. Our objective was to deploy a novel approach for evaluating brain injury after CA in critically ill patients at high risk for adverse neurological outcome. METHODS: This retrospective, single center study involved review of all consecutive portable MRIs performed as part of clinical care for CA patients between September 2020 and January 2022. Portable MR images were retrospectively reviewed by a blinded board-certified neuroradiologist (S.P.). Fluid-inversion recovery (FLAIR) signal intensities were measured in select regions of interest. RESULTS: We performed 22 low-field MRI examinations in 19 patients resuscitated from CA (68.4% male, mean [standard deviation] age, 51.8 [13.1] years). Twelve patients (63.2%) had findings consistent with HIBI on conventional neuroimaging radiology report. Low-field MRI detected findings consistent with HIBI in all of these patients. Low-field MRI was acquired at a median (interquartile range) of 78 (40-136) hours post-arrest. Quantitatively, we measured FLAIR signal intensity in three regions of interest, which were higher amongst patients with confirmed HIBI. Low-field MRI was completed in all patients without disruption of intensive care unit equipment monitoring and no safety events occurred. CONCLUSION: In a critically ill CA population in whom MR imaging is often not feasible, low-field MRI can be deployed at the bedside to identify HIBI. Low-field MRI provides an opportunity to evaluate the time-dependent nature of MRI findings in CA survivors.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Hipóxia-Isquemia Encefálica , Encéfalo/patologia , Estado Terminal , Feminino , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/etiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
10.
Sci Adv ; 8(16): eabm3952, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442729

RESUMO

Brain imaging is essential to the clinical management of patients with ischemic stroke. Timely and accessible neuroimaging, however, can be limited in clinical stroke pathways. Here, portable magnetic resonance imaging (pMRI) acquired at very low magnetic field strength (0.064 T) is used to obtain actionable bedside neuroimaging for 50 confirmed patients with ischemic stroke. Low-field pMRI detected infarcts in 45 (90%) patients across cortical, subcortical, and cerebellar structures. Lesions as small as 4 mm were captured. Infarcts appeared as hyperintense regions on T2-weighted, fluid-attenuated inversion recovery and diffusion-weighted imaging sequences. Stroke volume measurements were consistent across pMRI sequences and between low-field pMRI and conventional high-field MRI studies. Low-field pMRI stroke volumes significantly correlated with stroke severity and functional outcome at discharge. These results validate the use of low-field pMRI to obtain clinically useful imaging of stroke, setting the stage for use in resource-limited environments.

11.
Sci Rep ; 12(1): 67, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996970

RESUMO

Neuroimaging is crucial for assessing mass effect in brain-injured patients. Transport to an imaging suite, however, is challenging for critically ill patients. We evaluated the use of a low magnetic field, portable MRI (pMRI) for assessing midline shift (MLS). In this observational study, 0.064 T pMRI exams were performed on stroke patients admitted to the neuroscience intensive care unit at Yale New Haven Hospital. Dichotomous (present or absent) and continuous MLS measurements were obtained on pMRI exams and locally available and accessible standard-of-care imaging exams (CT or MRI). We evaluated the agreement between pMRI and standard-of-care measurements. Additionally, we assessed the relationship between pMRI-based MLS and functional outcome (modified Rankin Scale). A total of 102 patients were included in the final study (48 ischemic stroke; 54 intracranial hemorrhage). There was significant concordance between pMRI and standard-of-care measurements (dichotomous, κ = 0.87; continuous, ICC = 0.94). Low-field pMRI identified MLS with a sensitivity of 0.93 and specificity of 0.96. Moreover, pMRI MLS assessments predicted poor clinical outcome at discharge (dichotomous: adjusted OR 7.98, 95% CI 2.07-40.04, p = 0.005; continuous: adjusted OR 1.59, 95% CI 1.11-2.49, p = 0.021). Low-field pMRI may serve as a valuable bedside tool for detecting mass effect.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Acidente Vascular Cerebral/diagnóstico por imagem , Idoso , Connecticut , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/terapia
12.
Front Neurol ; 12: 760321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956049

RESUMO

Neuroimaging is a critical component of triage and treatment for patients who present with neuropathology. Magnetic resonance imaging and non-contrast computed tomography are the gold standard for diagnosis and prognostication of patients with acute brain injuries. However, these modalities require intra-hospital transport to strict, access-controlled environments, which puts critically ill patients at risk for complications and secondary injuries. A novel, portable MRI (pMRI) device that can be deployed at the patient's bedside provides a needed solution. In a dual-center investigation, Yale New Haven Hospital has obtained regular neuroimaging on patients using the pMRI as part of routine clinical care in the Emergency Department and Intensive Care Unit (ICU) since August of 2020. Massachusetts General Hospital has begun using pMRI in the Neuroscience Intensive Care Unit since January 2021. This technology has expanded the population of patients who can receive MRI imaging by increasing accessibility and timeliness for scan completion by eliminating the need for transport and increasing the potential for serial monitoring. Here we describe our methods for screening, coordinating, and executing pMRI exams and provide further detail on how to scan specific patient populations.

13.
Nat Commun ; 12(1): 5119, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433813

RESUMO

Radiological examination of the brain is a critical determinant of stroke care pathways. Accessible neuroimaging is essential to detect the presence of intracerebral hemorrhage (ICH). Conventional magnetic resonance imaging (MRI) operates at high magnetic field strength (1.5-3 T), which requires an access-controlled environment, rendering MRI often inaccessible. We demonstrate the use of a low-field MRI (0.064 T) for ICH evaluation. Patients were imaged using conventional neuroimaging (non-contrast computerized tomography (CT) or 1.5/3 T MRI) and portable MRI (pMRI) at Yale New Haven Hospital from July 2018 to November 2020. Two board-certified neuroradiologists evaluated a total of 144 pMRI examinations (56 ICH, 48 acute ischemic stroke, 40 healthy controls) and one ICH imaging core lab researcher reviewed the cases of disagreement. Raters correctly detected ICH in 45 of 56 cases (80.4% sensitivity, 95%CI: [0.68-0.90]). Blood-negative cases were correctly identified in 85 of 88 cases (96.6% specificity, 95%CI: [0.90-0.99]). Manually segmented hematoma volumes and ABC/2 estimated volumes on pMRI correlate with conventional imaging volumes (ICC = 0.955, p = 1.69e-30 and ICC = 0.875, p = 1.66e-8, respectively). Hematoma volumes measured on pMRI correlate with NIH stroke scale (NIHSS) and clinical outcome (mRS) at discharge for manual and ABC/2 volumes. Low-field pMRI may be useful in bringing advanced MRI technology to resource-limited settings.


Assuntos
Hemorragia Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/economia , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Neuroimagem/economia , Neuroimagem/instrumentação , Neuroimagem/métodos
14.
JAMA Neurol ; 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897296

RESUMO

IMPORTANCE: Neuroimaging is a key step in the clinical evaluation of brain injury. Conventional magnetic resonance imaging (MRI) systems operate at high-strength magnetic fields (1.5-3 T) that require strict, access-controlled environments. Limited access to timely neuroimaging remains a key structural barrier to effectively monitor the occurrence and progression of neurological injury in intensive care settings. Recent advances in low-field MRI technology have allowed for the acquisition of clinically meaningful imaging outside of radiology suites and in the presence of ferromagnetic materials at the bedside. OBJECTIVE: To perform an assessment of brain injury in critically ill patients in intensive care unit settings, using a portable, low-field MRI device at the bedside. DESIGN, SETTING, AND PARTICIPANTS: This was a prospective, single-center cohort study of 50 patients admitted to the neuroscience or coronavirus disease 2019 (COVID-19) intensive care units at Yale New Haven Hospital in New Haven, Connecticut, from October 30, 2019, to May 20, 2020. Patients were eligible if they presented with neurological injury or alteration, no contraindications for conventional MRI, and a body habitus not exceeding the scanner's 30-cm vertical opening. Diagnosis of COVID-19 was determined by positive severe acute respiratory syndrome coronavirus 2 polymerase chain reaction nasopharyngeal swab result. EXPOSURES: Portable MRI in an intensive care unit room. MAIN OUTCOMES AND MEASURES: Demographic, clinical, radiological, and treatment data were collected and analyzed. Brain imaging findings are described. RESULTS: Point-of-care MRI examinations were performed on 50 patients (16 women [32%]; mean [SD] age, 59 [12] years [range, 20-89 years]). Patients presented with ischemic stroke (n = 9), hemorrhagic stroke (n = 12), subarachnoid hemorrhage (n = 2), traumatic brain injury (n = 3), brain tumor (n = 4), and COVID-19 with altered mental status (n = 20). Examinations were acquired at a median of 5 (range, 0-37) days after intensive care unit admission. Diagnostic-grade T1-weighted, T2-weighted, T2 fluid-attenuated inversion recovery, and diffusion-weighted imaging sequences were obtained for 37, 48, 45, and 32 patients, respectively. Neuroimaging findings were detected in 29 of 30 patients who did not have COVID-19 (97%), and 8 of 20 patients with COVID-19 (40%) demonstrated abnormalities. There were no adverse events or complications during deployment of the portable MRI or scanning in an intensive care unit room. CONCLUSIONS AND RELEVANCE: This single-center series of patients with critical illness in an intensive care setting demonstrated the feasibility of low-field, portable MRI. These findings demonstrate the potential role of portable MRI to obtain neuroimaging in complex clinical care settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...