Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1298172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235109

RESUMO

Background: Anthracycline cardiotoxicity is a well-known complication of cancer treatment, and miRNAs have emerged as a key driver in the pathogenesis of cardiovascular diseases. This study aimed to investigate the expression of miRNAs in the myocardium in early and late stages of chronic anthracycline induced cardiotoxicity to determine whether this expression is associated with the severity of cardiac damage. Method: Cardiotoxicity was induced in rabbits via daunorubicin administration (daunorubicin, 3 mg/kg/week; for five and 10 weeks), while the control group received saline solution. Myocardial miRNA expression was first screened using TaqMan Advanced miRNA microfluidic card assays, after which 32 miRNAs were selected for targeted analysis using qRT-PCR. Results: The first subclinical signs of cardiotoxicity (significant increase in plasma cardiac troponin T) were observed after 5 weeks of daunorubicin treatment. At this time point, 10 miRNAs (including members of the miRNA-34 and 21 families) showed significant upregulation relative to the control group, with the most intense change observed for miRNA-1298-5p (29-fold change, p < 0.01). After 10 weeks of daunorubicin treatment, when a further rise in cTnT was accompanied by significant left ventricle systolic dysfunction, only miR-504-5p was significantly (p < 0.01) downregulated, whereas 10 miRNAs were significantly upregulated relative to the control group; at this time-point, the most intense change was observed for miR-34a-5p (76-fold change). Strong correlations were found between the expression of multiple miRNAs (including miR-34 and mir-21 family and miR-1298-5p) and quantitative indices of toxic damage in both the early and late phases of cardiotoxicity development. Furthermore, plasma levels of miR-34a-5p were strongly correlated with the myocardial expression of this miRNA. Conclusion: To the best of our knowledge, this is the first study that describes alterations in miRNA expression in the myocardium during the transition from subclinical, ANT-induced cardiotoxicity to an overt cardiotoxic phenotype; we also revealed how these changes in miRNA expression are strongly correlated with quantitative markers of cardiotoxicity.

2.
Clin Sci (Lond) ; 136(1): 139-161, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34878093

RESUMO

Angiotensin-converting enzyme inhibitors (ACEis) have been used to treat anthracycline (ANT)-induced cardiac dysfunction, and they appear beneficial for secondary prevention in high-risk patients. However, it remains unclear whether they truly prevent ANT-induced cardiac damage and provide long-lasting cardioprotection. The present study aimed to examine the cardioprotective effects of perindopril on chronic ANT cardiotoxicity in a rabbit model previously validated with the cardioprotective agent dexrazoxane (DEX) with focus on post-treatment follow-up (FU). Chronic cardiotoxicity was induced by daunorubicin (DAU; 3 mg/kg/week for 10 weeks). Perindopril (0.05 mg/kg/day) was administered before and throughout chronic DAU treatment. After the completion of treatment, significant benefits were observed in perindopril co-treated animals, particularly full prevention of DAU-induced mortality and prevention or significant reductions in cardiac dysfunction, plasma cardiac troponin T (cTnT) levels, morphological damage, and most of the myocardial molecular alterations. However, these benefits significantly waned during 3 weeks of drug-free FU, which was not salvageable by administering a higher perindopril dose. In the longer (10-week) FU period, further worsening of left ventricular function and morphological damage occurred together with heart failure (HF)-related mortality. Continued perindopril treatment in the FU period did not reverse this trend but prevented HF-related mortality and reduced the severity of the progression of cardiac damage. These findings contrasted with the robust long-lasting protection observed previously for DEX in the same model. Hence, in the present study, perindopril provided only temporary control of ANT cardiotoxicity development, which may be associated with the lack of effects on ANT-induced and topoisomerase II ß (TOP2B)-dependent DNA damage responses in the heart.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Cardiotoxicidade/prevenção & controle , Daunorrubicina/efeitos adversos , Perindopril/uso terapêutico , Animais , Antibióticos Antineoplásicos , Cardiotoxicidade/tratamento farmacológico , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/mortalidade , Masculino , Coelhos , Troponina T/sangue
3.
Circ Heart Fail ; 14(11): e008209, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551586

RESUMO

BACKGROUND: Anthracycline-induced heart failure has been traditionally attributed to direct iron-catalyzed oxidative damage. Dexrazoxane (DEX)-the only drug approved for its prevention-has been believed to protect the heart via its iron-chelating metabolite ADR-925. However, direct evidence is lacking, and recently proposed TOP2B (topoisomerase II beta) hypothesis challenged the original concept. METHODS: Pharmacokinetically guided study of the cardioprotective effects of clinically used DEX and its chelating metabolite ADR-925 (administered exogenously) was performed together with mechanistic experiments. The cardiotoxicity was induced by daunorubicin in neonatal ventricular cardiomyocytes in vitro and in a chronic rabbit model in vivo (n=50). RESULTS: Intracellular concentrations of ADR-925 in neonatal ventricular cardiomyocytes and rabbit hearts after treatment with exogenous ADR-925 were similar or exceeded those observed after treatment with the parent DEX. However, ADR-925 did not protect neonatal ventricular cardiomyocytes against anthracycline toxicity, whereas DEX exhibited significant protective effects (10-100 µmol/L; P<0.001). Unlike DEX, ADR-925 also had no significant impact on daunorubicin-induced mortality, blood congestion, and biochemical and functional markers of cardiac dysfunction in vivo (eg, end point left ventricular fractional shortening was 32.3±14.7%, 33.5±4.8%, 42.7±1.0%, and 41.5±1.1% for the daunorubicin, ADR-925 [120 mg/kg]+daunorubicin, DEX [60 mg/kg]+daunorubicin, and control groups, respectively; P<0.05). DEX, but not ADR-925, inhibited and depleted TOP2B and prevented daunorubicin-induced genotoxic damage. TOP2B dependency of the cardioprotective effects was probed and supported by experiments with diastereomers of a new DEX derivative. CONCLUSIONS: This study strongly supports a new mechanistic paradigm that attributes clinically effective cardioprotection against anthracycline cardiotoxicity to interactions with TOP2B but not metal chelation and protection against direct oxidative damage.


Assuntos
Antraciclinas/farmacologia , Cardiotoxicidade/prevenção & controle , Dexrazoxano/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Inibidores da Topoisomerase II/metabolismo , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , DNA Topoisomerases Tipo II/efeitos adversos , DNA Topoisomerases Tipo II/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacologia , Dexrazoxano/efeitos adversos , Cardiopatias/tratamento farmacológico , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
Clin Sci (Lond) ; 135(15): 1897-1914, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34318878

RESUMO

The anthracycline (ANT) anticancer drugs such as doxorubicin or daunorubicin (DAU) can cause serious myocardial injury and chronic cardiac dysfunction in cancer survivors. A bisdioxopiperazine agent dexrazoxane (DEX) has been developed as a cardioprotective drug to prevent these adverse events, but it is uncertain whether it is the best representative of the class. The present study used a rabbit model of chronic ANT cardiotoxicity to examine another bisdioxopiperazine compound called GK-667 (meso-(butane-2,3-diylbis(2,6-dioxopiperazine-4,1-diyl))bis(methylene)-bis(2-aminoacetate) hydrochloride), a water-soluble prodrug of ICRF-193 (meso-4,4'-(butan-2,3-diyl)bis(piperazine-2,6-dione)), as a potential cardioprotectant. The cardiotoxicity was induced by DAU (3 mg/kg, intravenously, weekly, 10 weeks), and GK-667 (1 or 5 mg/kg, intravenously) was administered before each DAU dose. The treatment with GK-667 was well tolerated and provided full protection against DAU-induced mortality and left ventricular (LV) dysfunction (determined by echocardiography and LV catheterization). Markers of cardiac damage/dysfunction revealed minor cardiac damage in the group co-treated with GK-667 in the lower dose, whereas almost full protection was achieved with the higher dose. This was associated with similar prevention of DAU-induced dysregulation of redox and calcium homeostasis proteins. GK-667 dose-dependently prevented tumor suppressor p53 (p53)-mediated DNA damage response in the LV myocardium not only in the chronic experiment but also after single DAU administration. These effects appear essential for cardioprotection, presumably because of the topoisomerase IIß (TOP2B) inhibition provided by its active metabolite ICRF-193. In addition, GK-667 administration did not alter the plasma pharmacokinetics of DAU and its main metabolite daunorubicinol (DAUol) in rabbits in vivo. Hence, GK-667 merits further investigation as a promising drug candidate for cardioprotection against chronic ANT cardiotoxicity.


Assuntos
Cardiomiopatias/prevenção & controle , Dano ao DNA , Dicetopiperazinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Pró-Fármacos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Cardiotoxicidade , Doença Crônica , Daunorrubicina , Modelos Animais de Doenças , Fibrose , Células HL-60 , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coelhos , Proteína Supressora de Tumor p53/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
5.
J Pharmacol Exp Ther ; 373(3): 402-415, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253261

RESUMO

Bisdioxopiperazine agent dexrazoxane (ICRF-187) has been the only effective and approved drug for prevention of chronic anthracycline cardiotoxicity. However, the structure-activity relationships (SARs) of its cardioprotective effects remain obscure owing to limited investigation of its derivatives/analogs and uncertainties about its mechanism of action. To fill these knowledge gaps, we tested the hypothesis that dexrazoxane derivatives exert cardioprotection via metal chelation and/or modulation of topoisomerase IIß (Top2B) activity in chronic anthracycline cardiotoxicity. Dexrazoxane was alkylated in positions that should not interfere with the metal-chelating mechanism of cardioprotective action; that is, on dioxopiperazine imides or directly on the dioxopiperazine ring. The protective effects of these agents were assessed in vitro in neonatal cardiomyocytes. All studied modifications of dexrazoxane molecule, including simple methylation, were found to abolish the cardioprotective effects. Because this challenged the prevailing mechanistic concept and previously reported data, the two closest derivatives [(±)-4,4'-(propane-1,2-diyl)bis(1-methylpiperazine-2,6-dione) and 4-(2-(3,5-dioxopiperazin-1-yl)ethyl)-3-methylpiperazine-2,6-dione] were thoroughly scrutinized in vivo using a rabbit model of chronic anthracycline cardiotoxicity. In contrast to dexrazoxane, both compounds failed to protect the heart, as demonstrated by mortality, cardiac dysfunction, and myocardial damage parameters, although the pharmacokinetics and metal-chelating properties of their metabolites were comparable to those of dexrazoxane. The loss of cardiac protection was shown to correlate with their abated potential to inhibit and deplete Top2B both in vitro and in vivo. These findings suggest a very tight SAR between bisdioxopiperazine derivatives and their cardioprotective effects and support Top2B as a pivotal upstream druggable target for effective cardioprotection against anthracycline cardiotoxicity. SIGNIFICANCE STATEMENT: This study has revealed the previously unexpected tight structure-activity relationships of cardioprotective effects in derivatives of dexrazoxane, which is the only drug approved for the prevention of cardiomyopathy and heart failure induced by anthracycline anticancer drugs. The data presented in this study also strongly argue against the importance of metal-chelating mechanisms for the induction of this effect and support the viability of topoisomerase IIß as an upstream druggable target for effective and clinically translatable cardioprotection.


Assuntos
Antraciclinas/efeitos adversos , Cardiotoxicidade/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , Dexrazoxano/farmacologia , Coração/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Linhagem Celular Tumoral , Células HL-60 , Humanos , Masculino , Modelos Animais , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Ratos , Ratos Wistar , Relação Estrutura-Atividade
6.
Clin Sci (Lond) ; 133(16): 1827-1844, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409729

RESUMO

Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.


Assuntos
Antraciclinas/toxicidade , Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Inibidores de Proteassoma/toxicidade , Animais , Antraciclinas/administração & dosagem , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Bortezomib/administração & dosagem , Bortezomib/toxicidade , Daunorrubicina/administração & dosagem , Daunorrubicina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/administração & dosagem , Coelhos , Ratos , Ratos Wistar
7.
Toxicology ; 372: 52-63, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27816693

RESUMO

Chronic anthracycline (ANT) cardiotoxicity is a serious complication of cancer chemotherapy. Molsidomine, a NO-releasing drug, has been found cardioprotective in different models of I/R injury and recently in acute high-dose ANT cardiotoxicity. Hence, we examined whether its cardioprotective effects are translatable to chronic ANT cardiotoxicity settings without induction of nitrosative stress and interference with antiproliferative action of ANTs. The effects of molsidomine (0.025 and 0.5mg/kg, i.v.) were studied on the well-established model of chronic ANT cardiotoxicity in rabbits (daunorubicin/DAU/3mg/kg/week for 10 weeks). Molsidomine was unable to significantly attenuate mortality, development of heart failure and morphological damage induced by DAU. Molsidomine did not alter DAU-induced myocardial lipoperoxidation, MnSOD down-regulation, up-regulation of HO-1, IL-6, and molecular markers of cardiac remodeling. Although molsidomine increased 3-nitrotyrosine in the myocardium, this event had no impact on cardiotoxicity development. Using H9c2 myoblasts and isolated cardiomyocytes, it was found that SIN-1 (an active metabolite of molsidomine) induces significant protection against ANT toxicity, but only at high concentrations. In leukemic HL-60 cells, SIN-1 initially augmented ANT cytotoxicity (in low and clinically achievable concentrations), but it protected these cells against ANT in the high concentrations. UHPLC-MS/MS investigation demonstrated that the loss of ANT cytotoxicity after co-incubation of the cells in vitro with high concentrations of SIN-1 is caused by unexpected chemical depletion of DAU molecule. The present study demonstrates that cardioprotective effects of molsidomine are not translatable to clinically relevant chronic form of ANT cardiotoxicity. The augmentation of antineoplastic effects of ANT in low (nM) concentrations may deserve further study.


Assuntos
Antraciclinas/toxicidade , Antibióticos Antineoplásicos/toxicidade , Cardiotônicos/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Molsidomina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Animais , Cardiotoxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Daunorrubicina/toxicidade , Doxorrubicina/toxicidade , Insuficiência Cardíaca/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Remodelação Ventricular/efeitos dos fármacos
8.
J Mol Cell Cardiol ; 91: 92-103, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26724189

RESUMO

Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive. Hence, in this study, the protective potential of inorganic nitrate and nitrite against chronic ANT cardiotoxicity was investigated, and the results were compared to those using DEX. Chronic cardiotoxicity was induced in rabbits with daunorubicin (DAU). Sodium nitrate (1g/L) was administered daily in drinking water, while sodium nitrite (0.15 or 5mg/kg) or DEX (60mg/kg) was administered parenterally before each DAU dose. Although oral nitrate induced a marked increase in plasma NOx, it showed no improvement in DAU-induced mortality, myocardial damage or heart failure. Instead, the higher nitrite dose reduced the incidence of end-stage cardiotoxicity, prevented related premature deaths and significantly ameliorated several molecular and cellular perturbations induced by DAU, particularly those concerning mitochondria. The latter result was also confirmed in vitro. Nevertheless, inorganic nitrite failed to prevent DAU-induced cardiac dysfunction and molecular remodeling in vivo and failed to overcome the cytotoxicity of DAU to cardiomyocytes in vitro. In contrast, DEX completely prevented all of the investigated molecular, cellular and functional perturbations that were induced by DAU. Our data suggest that the difference in cardioprotective efficacy between DEX and inorganic nitrite may be related to their different abilities to address a recently proposed upstream target for ANT in the heart - topoisomerase IIß.


Assuntos
Cardiotônicos/farmacologia , Cardiotoxicidade/prevenção & controle , Dexrazoxano/farmacologia , Nitratos/farmacologia , Nitrito de Sódio/farmacologia , Animais , Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Daunorrubicina/efeitos adversos , Esquema de Medicação , Infusões Intravenosas , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coelhos
9.
Int J Cardiol ; 201: 358-67, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26310978

RESUMO

BACKGROUND: Cardiac troponins (cTns) seem to be more sensitive for the detection of anthracycline cardiotoxicity than the currently recommended method of monitoring LV systolic function. However, the optimal timing of blood sampling remains unknown. Hence, the aims of the present study were to determine the precise diagnostic window for cTns during the development of chronic anthracycline cardiotoxicity and to evaluate their predictive value. METHODS: Cardiotoxicity was induced in rabbits with daunorubicin (3mg/kg, weekly, for 8 weeks). Blood samples were collected 2-168 h after the 1st, 5th and 8th drug administrations, and concentrations of cTns were determined using highly sensitive assays: hs cTnT (Roche) and hs cTnI (Abbott). RESULTS: The plasma levels of cTns progressively increased with the rising number of chemotherapy cycles. While only a mild non-significant increase in both cTn levels occurred after the first daunorubicin dose, a significant rise was observed after the 5th and 8th administrations. Two hours after these administrations, a significant increase occurred with a peak between 4-6h and a decline until 24h. Discrete cTn release continued even after cessation of the therapy. While greater variability of cTn levels was observed around the peak concentrations, the values did not correspond well with the severity of LV systolic dysfunction. Unlike AMI in cardiotoxicity, cTn elevations may be better associated with cumulative dose and concentrations at steady state than cmax. CONCLUSIONS: To the best of our knowledge, this is the first study to precisely describe the diagnostic window and predictive value of cTns in anthracycline cardiotoxicity.


Assuntos
Antraciclinas/toxicidade , Cardiotoxicidade/sangue , Troponina I/sangue , Troponina T/sangue , Animais , Antibióticos Antineoplásicos/toxicidade , Biomarcadores/sangue , Biomarcadores/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/diagnóstico por imagem , Daunorrubicina/toxicidade , Modelos Animais de Doenças , Ecocardiografia , Coração/efeitos dos fármacos , Coração/fisiologia , Masculino , Valor Preditivo dos Testes , Coelhos , Análise de Regressão , Sístole/efeitos dos fármacos , Sístole/fisiologia
10.
Biomed Res Int ; 2014: 291531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162006

RESUMO

Rats transgenic for Huntington's disease (tgHD51 CAG rats), surviving up to two years, represent an animal model of HD similar to the late-onset form of human disease. This enables us to follow histopathological changes in course of neurodegenerative process (NDP) within the striatum and compare them with postmortem samples of human HD brains. A basic difference between HD pathology in human and tgHD51 rats is in the rate of NDP progression that originates primarily from slow neuronal degeneration consequently resulting in lesser extent of concomitant reactive gliosis in the brain of tgHD51 rats. Although larger amount of striatal neurons displays only gradual decrease in their size, their number is significantly reduced in the oldest tgHD51 rats. Our quantitative analysis proved that the end of the first year represents the turn in the development of morphological changes related to the progression of NDP in tgHD51 rats. Our data also support the view that all types of CNS glial cells play an important, irreplaceable role in NDP. To the best of our knowledge, our findings are the first to document that tgHD51 CAG rats can be used as a valid animal model for detailed histopathological studies related to HD in human.


Assuntos
Corpo Estriado/patologia , Doença de Huntington/patologia , Degeneração Neural/patologia , Expansão das Repetições de Trinucleotídeos/genética , Animais , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Degeneração Neural/genética , Neurônios/patologia , Ratos , Ratos Transgênicos
11.
PLoS One ; 9(5): e96055, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804796

RESUMO

Chronic anthracycline cardiotoxicity is a serious clinical issue with well characterized functional and histopathological hallmarks. However, molecular determinants of the toxic damage and associated myocardial remodeling remain to be established. Furthermore, details on the different propensity of the left and right ventricle (LV and RV, respectively) to the cardiotoxicity development are unknown. Hence, the aim of the investigation was to study molecular changes associated with remodeling of the LV and RV in chronic anthracycline cardiotoxicity and post-treatment follow up. The cardiotoxicity was induced in rabbits with daunorubicin (3 mg/kg/week for 10 weeks) and animals were sacrificed either at the end of the treatment or after an additional 10 weeks. Daunorubicin induced severe and irreversible cardiotoxicity associated with LV dysfunction and typical morphological alterations, whereas the myocardium of the RV showed only mild changes. Both ventricles also showed different expression of ANP after daunorubicin treatment. Daunorubicin impaired the expression of several sarcomeric proteins in the LV, which was not the case of the RV. In particular, a significant drop was found in titin and thick filament proteins at both mRNA and protein level and this might be connected with persistent LV down-regulation of GATA-4. In addition, the LV was more affected by treatment-induced perturbations in calcium handling proteins. LV cardiomyocytes showed marked up-regulation of desmin after the treatment and vimentin was mainly induced in LV fibroblasts, whereas only weaker changes were observed in the RV. Remodeling of extracellular matrix was almost exclusively found in the LV with particular induction of collagen I and IV. Hence, the present study describes profound molecular remodeling of myocytes, non-myocyte cells and extracellular matrix in response to chronic anthracycline treatment with marked asymmetry between LV and RV.


Assuntos
Antraciclinas/toxicidade , Miocárdio/metabolismo , Remodelação Ventricular/fisiologia , Animais , Western Blotting , Daunorrubicina/farmacologia , Ecocardiografia , Imuno-Histoquímica , Filamentos Intermediários/metabolismo , Masculino , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Troponina T/metabolismo , Remodelação Ventricular/efeitos dos fármacos
12.
Toxicology ; 311(3): 191-204, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831762

RESUMO

Despite incomplete understanding to its mechanism of action, dexrazoxane (DEX) is still the only clearly effective cardioprotectant against chronic anthracycline (ANT) cardiotoxicity. However, its clinical use is currently restricted to patients exceeding significant ANT cumulative dose (300mg/m(2)), although each ANT cycle may induce certain potentially irreversible myocardial damage. Therefore, the aim of this study was to compare early and delayed DEX intervention against chronic ANT cardiotoxicity and study the molecular events involved. The cardiotoxicity was induced in rabbits with daunorubicin (DAU; 3mg/kg/week for 10 weeks); DEX (60mg/kg) was administered either before the 1st or 7th DAU dose (i.e. after ≈300mg/m(2) cumulative dose). While both DEX administration schedules prevented DAU-induced premature deaths and severe congestive heart failure, only the early intervention completely prevented the left ventricular dysfunction, myocardial morphological changes and mitochondrial damage. Further molecular analyses did not support the assumption that DEX cardioprotection is based and directly proportional to protection from DAU-induced oxidative damage and/or deletions in mtDNA. Nevertheless, DAU induced significant up-regulation of heme oxygenase 1 pathway while heme synthesis was inversely regulated and both changes were schedule-of-administration preventable by DEX. Early and delayed DEX interventions also differed in ability to prevent DAU-induced down-regulation of expression of mitochondrial proteins encoded by both nuclear and mitochondrial genome. Hence, the present functional, morphological as well as the molecular data highlights the enormous cardioprotective effects of DEX and provides novel insights into the molecular events involved. Furthermore, the data suggests that currently recommended delayed intervention may not be able to take advantage of the full cardioprotective potential of the drug.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotônicos/administração & dosagem , Daunorrubicina/toxicidade , Cardiopatias/prevenção & controle , Razoxano/administração & dosagem , Animais , Citrato (si)-Sintase/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Coelhos , Troponina T/sangue , Função Ventricular Esquerda/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-23681309

RESUMO

AIM: To evaluate the anticancer effect of alpha-tomatine (i.p.) either alone or in combination with doxorubicin (i.v.) in a mouse tumour model. METHODS: We studied the effect of repeated alpha-tomatine (0.1 - 9 mg/kg) and/or doxorubicin (2 mg/kg) on the growth and mitotic activity of the solid Ehrlich tumour in vivo, as well as on the survival of the tumour-bearing mice. RESULTS: Monotherapy with alpha-tomatine had a significant dose-dependent anticancer effect which peaked at 1 mg/kg. This was shown by both slowed tumour growth and reduced tumour cell proliferation. We also provide the first evidence that the combination alpha-tomatine (1 mg/kg) and doxorubicin (2 mg/kg) had a synergistic effect and significantly prolonged the survival of the mice. Neither alpha-tomatine nor doxorubicin influenced the infiltration of tumours with CD3+ lymphocytes; nor were we able to find an in vivo modulation of the key molecules of two regulatory pathways reported in vitro as the principal anti-cancer mechanisms of alpha-tomatine, i.e. iNOS and phosphorylated ERK2. However, alpha-tomatine still led to intracellular DNA inhibition and protein synthesis in Ehrlich tumour cells in a short-term culture ex vivo with IC50 values of 8.7 and 6.6 µM. CONCLUSIONS: The results suggest that ΤΟΜ, especially in combination with doxorubicin, may be a promising agent for the treatment of malignant solid tumours. Despite growing knowledge of the mechanisms of ΤΟΜ action in cancer cells, most aspects remain unclear. Parallel organ toxicity, especially potential liver effects, requires careful attention when performing in vivo studies in the future.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma de Ehrlich/tratamento farmacológico , Doxorrubicina/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Tomatina/análogos & derivados , Animais , Bilirrubina/sangue , Biomarcadores/metabolismo , Western Blotting , Carcinoma de Ehrlich/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Fígado/efeitos dos fármacos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Tomatina/administração & dosagem , Tomatina/farmacologia
14.
CNS Neurol Disord Drug Targets ; 10(4): 486-99, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21495959

RESUMO

The evidence for the existence of neurogenesis in the adult mammalian brain, including humans is now widely accepted. Despite the fact that adult neural stem cells appear to be very promising, a wide range of their unrevealed properties, abilities but also limitations under physiological and especially pathological conditions still need to be investigated and explained. Huntington's disease (HD) is characterized by successive degeneration of relatively well-defined neuronal population. Moreover, the most affected region, the caudate nucleus, is adjacent to the subependymal zone (SEZ) neurogenic region. Therefore, the possibility to harness the endogenous neural stem cell capacity for repairing, or at least restricting, the fatal neurodegenerative process in HD patients using promoted neurogenesis in the adult SEZ represent the exciting new possibility in clinical management of this disorder. On the other hand, many questions have to be answered before neuronal replacement therapies using endogenous precursors become a reality, particularly in relation to neurodegenerative diseases. Fundamental for all experimental, functional and future clinical studies is detailed morphological description of structures involved in the process of neurogenesis. The objectives of this review are to describe neurogenesis in the adult murine and human brain (with particular emphasis to morphological aspects of this process) and to determine to what extent it is affected in animal models of HD and in the human HD brain. Due to very limited evidence referring to the impact of striatal pathology of HD phenotype on the adult neurogenesis in the SEZ, some results gained from our studies on two rat models of HD, i.e. the neurotoxic lesion and transgenic HD rats, and on human HD brains are discussed.


Assuntos
Doença de Huntington/terapia , Degeneração Neural/patologia , Células-Tronco Neurais/fisiologia , Animais , Núcleo Caudado/patologia , Núcleo Caudado/fisiopatologia , Diferenciação Celular/fisiologia , Proliferação de Células , Humanos , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Mamíferos , Células-Tronco Neurais/transplante , Neurogênese/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Fenótipo
15.
J Mol Cell Cardiol ; 50(5): 849-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284945

RESUMO

Chronic anthracycline cardiotoxicity is a feared complication of cancer chemotherapy. However, despite several decades of primarily hypothesis-driven research, the molecular basis of this phenomenon remains poorly understood. The aim of this study was to obtain integrative molecular insights into chronic anthracycline cardiotoxicity and the resulting heart failure. Cardiotoxicity was induced in rabbits (daunorubicin 3mg/kg, weekly, 10weeks) and changes in the left ventricular proteome were analyzed by 2D-DIGE. The protein spots with significant changes (p<0.01, >1.5-fold) were identified using MALDI-TOF/TOF. Key data were corroborated by immunohistochemistry, qRT-PCR and enzyme activity determination and compared with functional, morphological and biochemical data. The most important alterations were found in mitochondria - especially in proteins crucial for oxidative phosphorylation, energy channeling, antioxidant defense and mitochondrial stress. Furthermore, the intermediate filament desmin, which interacts with mitochondria, was determined to be distinctly up-regulated and disorganized in its expression pattern. Interestingly, the latter changes reflected the intensity of toxic damage in whole hearts as well as in individual cells. In addition, a marked drop in myosin light chain isoforms, activation of proteolytic machinery (including the proteasome system), increased abundance of chaperones and proteins involved in chaperone-mediated autophagy, membrane repair as well as apoptosis were found. In addition, dramatic changes in proteins of basement membrane and extracellular matrix were documented. In conclusion, for the first time, the complex proteomic signature of chronic anthracycline cardiotoxicity was revealed which enhances our understanding of the basis for this phenomenon and it may enhance efforts in targeting its reduction.


Assuntos
Antraciclinas/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Animais , Western Blotting , Daunorrubicina/toxicidade , Ecocardiografia , Eletroforese em Gel Bidimensional , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Imuno-Histoquímica , Malondialdeído/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Troponina I/metabolismo , Vimentina/metabolismo
16.
Acta Histochem ; 113(8): 783-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21193226

RESUMO

Although Huntington's disease (HD) occurs only in humans, the use of animal models is crucial for HD research. New genetic models may provide novel insights into HD pathogenesis, but their relevance to human HD is problematic, particularly owing to a lower number of typically degenerated and dying striatal neurons and consequent insignificant reactive gliosis. Hence, neurotoxin-induced animal models are widely used for histopathological studies. Unlike in humans, the neurodegenerative process (NDP) of the HD phenotype develops very fast after the application of quinolinic acid (QA). For that reason, we compared three groups of rats in more advanced stages (1-12 months) of the QA lesion with 3 representative HD cases of varying length and grade. The outcomes of our long-term histological study indicate that significant parallels may be drawn between HD autopsies and QA-lesioned rat brains (particularly between post-lesional months 3 and 9) in relation to (1) the progression of morphological changes related to the neuronal degeneration, primarily the rarefaction of neuropil affecting the density as well as the character of synapses, resulting in severe striatal atrophy and (2) the participation of oligodendrocytes in reparative gliosis. Conversely, the development and character of reactive astrogliosis is principally conditioned by the severity of striatal NDP in the context of neuron-glia relationship. Despite the above-described differences, morphological patterns in which the components of striatal parenchyma react to the progression of NDP are similar in both human and rat brains. Our study specifies the possibilities of interpreting the morphological findings gained from the QA-induced animal model of HD in relation to HD post-mortem specimens.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/patologia , Degeneração Neural/patologia , Animais , Encéfalo/patologia , Progressão da Doença , Gliose/patologia , Humanos , Masculino , Oligodendroglia/patologia , Ratos , Ratos Wistar
17.
Hum Exp Toxicol ; 28(10): 631-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19812120

RESUMO

Coronary heart disease and in particular its most serious form - acute myocardial infarction (AMI) - represents the most common cause of mortality in developed countries. Better prognosis may be achieved by understanding the etiopathogenetic mechanisms of AMI. Therefore, a catecholamine model of myocardial injury, which has appeared to be very similar to AMI in human in some aspect, was used. Male Wistar:Han rats were randomly divided into two groups: control group (saline) and isoprenaline group (ISO; synthetic catecholamine, 100 mg.kg(- 1) subcutaneously [s.c.]). After 24 hours, functional parameters were measured, biochemical markers in the blood and metals content in the heart tissue were analysed and histological examination was performed. ISO caused marked myocardial injury that was associated with myocardial calcium overload. Close correlation between myocardial impairment (i.e. serum TnT, stroke volume index and wet ventricles weight) and the levels of myocardial calcium was observed. Direct reactive oxygen species (ROS) involvement was documented only by non-significant increase in malonyldialdehyde 24 hours after ISO injury. Moreover, myocardial element analysis revealed no significant changes as for the content of zinc and iron while selenium and copper increased in the ISO group although it reached statistical significance only for the latter.


Assuntos
Biomarcadores/análise , Catecolaminas/toxicidade , Isoproterenol/toxicidade , Infarto do Miocárdio/diagnóstico , Miocárdio/metabolismo , Animais , Antioxidantes/metabolismo , Ácido Ascórbico/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Modelos Animais de Doenças , Testes de Função Cardíaca , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ferro/metabolismo , Masculino , Infarto do Miocárdio/sangue , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Troponina T/sangue , Vitamina E/sangue , Zinco/metabolismo
18.
Chem Res Toxicol ; 22(1): 208-17, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19172757

RESUMO

Iron (Fe) chelators are used clinically for the treatment of Fe overload disease. Iron also plays a role in the pathology of many other conditions, and these potentially include the cardiotoxicity induced by catecholamines such as isoprenaline (ISO). The current study examined the potential of Fe chelators to prevent ISO cardiotoxicity. This was done as like other catecholamines, ISO contains the classical catechol moiety that binds Fe and may form redox-active and cytotoxic Fe complexes. Studies in vitro used the cardiomyocyte cell line, H9c2, which was treated with ISO in the presence or absence of the chelator, desferrioxamine (DFO), or the lipophilic ligand, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH). Both of these chelators were not cardiotoxic and significantly reduced ISO cardiotoxicity in vitro. However, PCTH was far more effective than DFO, with the latter showing activity only at a high, clinically unachievable concentration. Further studies in vitro showed that interaction of ISO with Fe(II)/(III) did not increase cytotoxic radical generation, suggesting that this mechanism was not involved. Studies in vivo were initiated using rats pretreated intravenously with DFO or PCTH before subcutaneous administration of ISO (100 mg/kg). DFO at a clinically used dose (50 mg/kg) failed to reduce catecholamine cardiotoxicity, while PCTH at an equimolar dose totally prevented catecholamine-induced mortality and reduced cardiotoxicity. This study demonstrates that PCTH reduced ISO-induced cardiotoxicity in vitro and in vivo, demonstrating that Fe plays a role, in part, in the pathology observed.


Assuntos
Quelantes de Ferro/farmacologia , Isoproterenol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Tiofenos/farmacologia , Animais , Catecolaminas/antagonistas & inibidores , Catecolaminas/metabolismo , Catecolaminas/toxicidade , Linhagem Celular , Desferroxamina/administração & dosagem , Ferro/metabolismo , Isoproterenol/antagonistas & inibidores , Isoproterenol/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Oxirredução , Ratos , Ratos Wistar
19.
Biometals ; 22(2): 353-61, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18982411

RESUMO

Lactoferrin is recently under intense investigation because of its proposed several pharmacologically positive effects. Based on its iron-binding properties and its physiological presence in the human body, it may have a significant impact on pathological conditions associated with iron-catalysed reactive oxygen species (ROS). Its effect on a catecholamine model of myocardial injury, which shares several pathophysiological features with acute myocardial infarction (AMI) in humans, was examined. Male Wistar rats were randomly divided into four groups according to the received medication: control (saline), isoprenaline (ISO, 100 mg kg(-1) s.c.), bovine lactoferrin (La, 50 mg kg(-1) i.v.) or a combination of La + ISO in the above-mentioned doses. After 24 h, haemodynamic functional parameters were measured, a sample of blood was withdrawn and the heart was removed for analysis of various parameters. Lactoferrin premedication reduced some impairment caused by ISO (e.g. a stroke volume decrease, an increase in peripheral resistance and calcium overload). These positive effects were likely to have been mediated by the positive inotropic effect of lactoferrin and by inhibition of ROS formation due to chelation of free iron. The failure of lactoferrin to provide higher protection seems to be associated with the complexity of catecholamine cardiotoxicity and with its hydrophilic character.


Assuntos
Catecolaminas/metabolismo , Lactoferrina/química , Animais , Bovinos , Quelantes/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hemodinâmica , Ferro/química , Masculino , Infarto do Miocárdio/metabolismo , Projetos Piloto , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio
20.
J Pharmacol Exp Ther ; 326(1): 259-69, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18434588

RESUMO

Anthracycline cardiotoxicity ranks among the most severe complications of cancer chemotherapy. Although its pathogenesis is only incompletely understood, "reactive oxygen species (ROS) and iron" hypothesis has gained the widest acceptance. Besides dexrazoxane, novel oral iron chelator deferiprone has been recently reported to afford significant cardioprotection in both in vitro and ex vivo conditions. Therefore, the aim of this study was to assess whether deferiprone 1) has any effect on the anticancer action of daunorubicin and 2) whether it can overcome or significantly reduce the chronic anthracycline cardiotoxicity in the in vivo rabbit model (daunorubicin, 3 mg/kg i.v., weekly for 10 weeks). First, using the leukemic cell line, deferiprone (1-300 microM) was shown not to blunt the antiproliferative effect of daunorubicin. Instead, in clinically relevant concentrations (>10 microM), deferiprone augmented the antiproliferative action of daunorubicin. However, deferiprone (10 or 50 mg/kg administered p.o. before each daunorubicin dose) failed to afford significant protection against daunorubicin-induced mortality, left ventricular lipoperoxidation, cardiac dysfunction, and morphological cardiac deteriorations, as well as an increase in plasma cardiac troponin T. Hence, this first in vivo study changes the current view on deferiprone as a potential cardioprotectant against anthracycline cardiotoxicity. In addition, these results, together with our previous findings, further suggest that the role of iron and its chelation in anthracycline cardiotoxicity is not as trivial as originally believed and/or other mechanisms unrelated to iron-catalyzed ROS production are involved.


Assuntos
Antraciclinas/administração & dosagem , Antraciclinas/toxicidade , Cardiopatias/induzido quimicamente , Piridonas/uso terapêutico , Animais , Antraciclinas/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Cardiotônicos/uso terapêutico , Cardiotônicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Daunorrubicina/antagonistas & inibidores , Deferiprona , Células HL-60 , Cardiopatias/mortalidade , Cardiopatias/patologia , Humanos , Masculino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...