Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(10): 4163-4172, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32391695

RESUMO

DNA scaffolds enable base-pair-specific positioning of fluorescent molecules, allowing for nanometer-scale precision in controlling multidye interactions. Expanding on this concept, DNA-based molecular photonic wires (MPWs) allow for light harvesting and directional propagation of photonic energy on the nanometer scale. The most common MPW examples exploit Förster resonance energy transfer (FRET), and FRET between the same dye species (HomoFRET) was recently shown to increase the distance and efficiency at which MPWs can function. Although increased proximity between adjacent fluorophores can be used to increase the energy transfer efficiency, FRET assumptions break down as the distance between the dye molecules becomes comparable to their size (∼2 nm). Here we compare dye conjugation with single versus dimer Cy5 dye repeats as HomoFRET MPW components on a double-crossover DNA scaffold. At room temperature (RT) under low-light conditions, end-labeled uncoupled dye molecules provide optimal transfer, while the Cy5 dimers show ultrafast (<100 ps) nonradiative decay that severely limits their functionality. Of particular interest is the observation that through increased excitation fluence as well as cryogenic temperatures, the dimeric MPW shows suppression of the ultrafast decay, demonstrating fluorescence lifetimes similar to the single Cy5 MPWs. This work points to the complex dynamic capabilities of dye-based nanophotonic networks, where dye positioning and interactions can become critical, and could be used to extend the lengths and complexities of such dye-DNA devices, enabling multiparameter nanophotonic circuitry.


Assuntos
Carbocianinas/química , DNA/química , Corantes Fluorescentes/química , Fótons , Termodinâmica , Transferência Ressonante de Energia de Fluorescência
2.
ACS Photonics ; 3(12): 2445-2452, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28451625

RESUMO

We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f/2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

3.
Crit Care ; 17(3): R85, 2013 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23663657

RESUMO

INTRODUCTION: Fungal sepsis is an increasingly common problem in intensive care unit patients.Mortality from fungal sepsis remains high despite antimicrobial therapy that is highly active against most fungal pathogens, a finding consistent with defective host immunity that is present in many patients with disseminated fungemia.One recently recognized immunologic defect that occurs in patients with sepsis is T cell "exhaustion" due to increased expression of programmed cell death -1 (PD-1).This study tested the ability of anti-PD-1 and anti-programmed cell death ligand -1 (anti-PD-L1) antagonistic antibodies to improve survival and reverse sepsis-induced immunosuppression in two mouse models of fungal sepsis. METHODS: Fungal sepsis was induced in mice using two different models of infection, that is, primary fungal sepsis and secondary fungal sepsis occurring after sub-lethal cecal ligation and puncture (CLP).Anti-PD-1 and anti-PD-L1 were administered 24 to 48 h after fungal infection and effects on survival, interferon gamma production, and MHC II expression were examined. RESULTS: Anti-PD-1 and anti-PD-L1 antibodies were highly effective at improving survival in primary and secondary fungal sepsis.Both antibodies reversed sepsis-induced suppression of interferon gamma and increased expression of MHC II on antigen presenting cells.Blockade of cytotoxic T-lymphocyte antigen-4 (CTLA-4), a second negative co-stimulatory molecule that is up-regulated in sepsis and acts like PD-1 to suppress T cell function, also improved survival in fungal sepsis. CONCLUSIONS: Immuno-adjuvant therapy with anti-PD-1, anti-PD-L1 and anti-CTLA-4 antibodies reverse sepsis-induced immunosuppression and improve survival in fungal sepsis.The present results are consistent with previous studies showing that blockade of PD-1 and CTLA-4 improves survival in bacterial sepsis.Thus, immuno-adjuvant therapy represents a novel approach to sepsis and may have broad applicability in the disorder.Given the relative safety of anti-PD-1 antibody in cancer clinical trials to date, therapy with anti-PD-1 in patients with life-threatening sepsis who have demonstrable immunosuppression should be strongly considered.


Assuntos
Anticorpos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Fungemia/imunologia , Fungemia/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Candidíase/imunologia , Candidíase/terapia , Modelos Animais de Doenças , Genes MHC Classe I , Antígenos HLA-DR/biossíntese , Hospedeiro Imunocomprometido , Interferon gama/biossíntese , Masculino , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA