Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(6): 2222-2238, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717116

RESUMO

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.


Assuntos
Descoberta de Drogas , Oxidiazóis , Trypanosoma brucei brucei , Oxidiazóis/farmacologia , Oxidiazóis/química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Antiparasitários/farmacologia , Antiparasitários/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Leishmania infantum/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...