Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794458

RESUMO

The effect of plant cultivar on the degree of mycorrhization and the benefits mediated by arbuscular mycorrhizal fungi (AMF) have been documented in many crops. In apple, a wide variety of rootstocks are commercially available; however, it is not clear whether some rootstock genotypes are more susceptible to mycorrhization than others and/or whether AMF species identity influences rootstock compatibility. This study addresses these questions by directly testing the ability/efficacy of four different AMF species (Rhizophagus irregularis, Septoglomus deserticola, Claroideoglomus claroideum or Claroideoglomus etunicatum) to colonize a variety of commercially available Geneva apple rootstock genotypes (G.11, G.41, G.210, G.969, and G.890). Briefly, micropropagated plantlets were inoculated with individual species of AMF or were not inoculated. The effects of the rootstock genotype/AMF interaction on mycorrhization, plant growth, and/or leaf nutrient concentrations were assessed. We found that both rootstock genotype and the identity of the AMF are significant sources of variation affecting the percentage of colonization. However, these factors largely operate independently in terms of the extent of root colonization. Among the AMF tested, C. etunicatum and R. irregularis represented the most compatible fungal partners, regardless of apple rootstock genotype. Among the rootstocks tested, semi-dwarfing rootstocks appeared to have an advantage over dwarfing rootstocks in regard to establishing and maintaining associations with AMF. Nutrient uptake and plant growth outcomes were also influenced in a rootstock genotype/AMF species-specific manner. Our findings suggest that matching host genetics with compatible AMF species has the potential to enhance agricultural practices in nursery and orchard systems.

2.
Microbiome ; 11(1): 8, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635724

RESUMO

BACKGROUND: The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of beneficial members. In most sustainable practices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/metabolites that act as direct stimulants of beneficial groups are not characterized. Outcomes of such indirect amendments are unpredictable regarding engineering the microbiome and achieving a plant-beneficial environment. RESULTS: This study applied network analysis of metagenomics data to explore amendment-derived transformations in the soil microbiome, which lead to the suppression of pathogens affecting apple root systems. Shotgun metagenomic analysis was conducted with data from 'sick' vs 'healthy/recovered' rhizosphere soil microbiomes. The data was then converted into community-level metabolic networks. Simulations examined the functional contribution of treatment-associated taxonomic groups and linked them with specific amendment-induced metabolites. This analysis enabled the selection of specific metabolites that were predicted to amplify or diminish the abundance of targeted microbes functional in the healthy soil system. Many of these predictions were corroborated by experimental evidence from the literature. The potential of two of these metabolites (dopamine and vitamin B12) to either stimulate or suppress targeted microbial groups was evaluated in a follow-up set of soil microcosm experiments. The results corroborated the stimulant's potential (but not the suppressor) to act as a modulator of plant beneficial bacteria, paving the way for future development of knowledge-based (rather than trial and error) metabolic-defined amendments. Our pipeline for generating predictions for the selective targeting of microbial groups based on processing assembled and annotated metagenomics data is available at https://github.com/ot483/NetCom2 . CONCLUSIONS: This research demonstrates how genomic-based algorithms can be used to formulate testable hypotheses for strategically engineering the rhizosphere microbiome by identifying specific compounds, which may act as selective modulators of microbial communities. Applying this framework to reduce unpredictable elements in amendment-based solutions promotes the development of ecologically-sound methods for re-establishing a functional microbiome in agro and other ecosystems. Video Abstract.


Assuntos
Microbiota , Solo , Bactérias/genética , Microbiota/genética , Metagenoma , Metagenômica , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia
3.
Front Microbiol ; 13: 949404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958152

RESUMO

Replant diseases are a common occurrence in perennial cropping systems. In apple, progress toward the development of a universally effective disease management strategy, beyond the use of broad-spectrum soil fumigants, is impeded by inconsistencies in defining replant disease etiology. A preponderance of evidence attributes apple replant disease to plant-induced changes in the soil microbiome including the proliferation of soilborne plant pathogens. Findings from alternative studies suggest that the contribution of abiotic factors, such as the accumulation of phenolic detritus from previous orchard plantings, may play a part as well. Engineering of the resident soil microbiome using resource-based strategies is demonstrating potential to limit activity of replant pathogens and improve productivity in newly established orchards. An understanding of factors promoting the assembly of a disease-suppressive soil microbiome along with consideration of host factors that confer disease tolerance or resistance is imperative to the developing a more holistic view of orchard ecosystem dynamics. Here, we review the literature concerning the transition of orchard soil from a healthy state to a replant disease-conducive state. Included in the scope of this review are studies on the influence of soil type and geography on the apple replant pathogen complex. Furthermore, several tolerance and innate resistance mechanisms that have been described in apple to date, including the role of root chemistry/exudates are discussed. Finally, the interplay between apple rootstock genotype and key resource-based strategies which have been shown to "reshape" the plant holobiont in favor of a more prophylactic or disease-suppressive state is highlighted.

4.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043188

RESUMO

The endophytic microbiome of plants is believed to have a significant impact on its physiology and disease resistance, however, the role of host genotype in determining the composition of the endophytic microbiome of apple root systems remains an open question that has important implications for defining breeding objectives. In the current study, the bacterial and fungal microbiota associated with four different apple rootstocks planted in April, 2018 in the same soil environment and harvested in May, 2019 were evaluated to determine the role of genotype on the composition of both the bacterial and fungal communities. Results demonstrated a clear impact of genotype and root size on microbial composition and diversity. The fungal community was more affected by plant genotype whereas the bacterial community was shaped by root size. Fungal and bacterial abundance was equal between different-sized roots however, significantly higher microbial counts were detected in rhizosphere samples compared to root endosphere samples. This study provides information that can be used to develop a comprehensive and readily applicable understanding of the impact of genotype and environmental factors on the establishment of plant microbiome, as well as its potential function and impact on host physiology.

5.
Microorganisms ; 9(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34442717

RESUMO

Charcoal rot and Fusarium wilt, caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, respectively, are major soil-borne diseases of strawberry that have caused significant crop losses in California. Anaerobic soil disinfestation has been studied as an industry-level option to replace soil fumigants to manage these serious diseases. Studies were conducted to discern whether Gramineae carbon input type, incubation temperature, or incubation duration influences the efficacy of this disease control tactic. In experiments conducted using 'low rate' amendment applications at moderate day/night temperatures (24/18 °C), and carbon inputs (orchard grass, wheat, and rice bran) induced an initial proliferation and subsequent decline in soil density of the Fusarium wilt pathogen. This trend coincided with the onset of anaerobic conditions and a corresponding generation of various anti-fungal compounds, including volatile organic acids, hydrocarbons, and sulfur compounds. Generation of these metabolites was associated with increases in populations of Clostridium spp. Overall, carbon input and incubation temperature, but not incubation duration, significantly influenced disease suppression. All Gramineae carbon inputs altered the soil microbiome and metabolome in a similar fashion, though the timing and maximum yield of specific metabolites varied with input type. Fusarium wilt and charcoal rot suppression were superior when anaerobic soil disinfestation was conducted using standard amendment rates of 20 t ha-1 at elevated temperatures combined with a 3-week incubation period. Findings indicate that anaerobic soil disinfestation can be further optimized by modulating carbon source and incubation temperature, allowing the maximum generation of antifungal toxic volatile compounds. Outcomes also indicate that carbon input and environmental variables may influence treatment efficacy in a target pathogen-dependent manner which will require pathogen-specific optimization of treatment protocols.

6.
Microorganisms ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917441

RESUMO

Brassicaceae seed meal (SM) soil amendment has been utilized as an effective strategy to control the biological complex of organisms, which includes oomycetes, fungi, and parasitic nematodes, that incites the phenomenon termed apple replant disease. Soil-borne disease control attained in response to Brassicaceae SM amendment is reliant on multiple chemical and biological attributes, including specific SM-generated modifications to the soil/rhizosphere microbiome. In this study, we conducted a comparative analyses of apple root gene expression as influenced by rootstock genotype combined with a seed meal (SM) soil amendment. Apple replant disease (ARD) susceptible (M.26) and tolerant (G.210) rootstocks cultivated in SM-amended soil exhibited differential gene expression relative to corresponding non-treated control (NTC) orchard soil. The temporal dynamics of gene expression indicated that the SM-amended soil system altered the trajectory of the root transcriptome in a genotype-specific manner. In both genotypes, the expression of genes related to plant defense and hormone signaling were altered in SM-amended soil, suggesting SM-responsive phytohormone regulation. Altered gene expression was temporally associated with changes in rhizosphere microbiome density and composition in the SM-treated soil. Gene expression analysis across the two rootstocks cultivated in the pathogen-infested NTC soil showed genotype-specific responses indicative of different defensive strategies. These results are consistent with previously described resistance mechanisms of ARD "tolerant" rootstock cultivars and also add to our understanding of the multiple mechanisms by which SM soil amendment and the resulting rhizosphere microbiome affect apple rootstock physiology. Future studies which assess transcriptomic and metagenomic data in parallel will be important for illuminating important connections between specific rhizosphere microbiota, gene-regulation, and plant health.

7.
Front Microbiol ; 10: 2365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681226

RESUMO

Significant interest exists in engineering the soil microbiome to attain suppression of soil-borne plant diseases. Anaerobic soil disinfestation (ASD) has potential as a biologically regulated disease control method; however, the role of specific metabolites and microbial community dynamics contributing to ASD mediated disease control is mostly uncharacterized. Understanding the trajectory of co-evolutionary processes leading to syntrophic generation of functional metabolites during ASD is a necessary prelude to the predictive utilization of this disease management approach. Consequently, metabolic and microbial community profiling were used to generate highly dimensional datasets and network analysis to identify sequential transformations through aerobic, facultatively anaerobic, and anaerobic soil phases of the ASD process and distinct groups of metabolites and microorganisms linked with those stages. Transient alterations in abundance of specific microbial groups, not consistently accounted for in previous studies of the ASD process, were documented in this time-course study. Such events initially were associated with increases and subsequent diminution in highly labile metabolites conferred by the carbon input. Proliferation and dynamic compositional changes in the Firmicutes community continued throughout the anaerobic phase and was linked to temporal changes in metabolite abundance including accumulation of small chain organic acids, methyl sulfide compounds, hydrocarbons, and p-cresol with antimicrobial properties. Novel potential modes of disease control during ASD were identified and the importance of the amendment and "community metabolism" for temporally supplying specific classes of labile compounds were revealed.

8.
Plant Dis ; 103(5): 846-852, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30856078

RESUMO

Generation of allyl isothiocyanate (AITC) in soil treated with residues of specific Brassicaceae species yields direct and indirect suppression of soilborne plant pathogens. Soil physical conditions demonstrably affected the quantity of AITC generated in response to soil incorporation of a Brassica juncea/Sinapis alba seed meal (SM) formulation. The concentration of AITC generated in SM-amended soil increased with an increase in temperature from 10 to 30°C. AITC emission was also elevated with an increase in soil water potential from -1,000 kPa through -40 kPa; however, a significant decrease in AITC emission was observed in a saturated soil environment (0 kPa). Peak AITC emission was obtained 2 to 3 h after SM amendment under optimal conditions but the peak was delayed in soils incubated at low temperature or in extreme moisture environments. Although AITC production varied significantly across different orchard soils, all three orchard soils yielded the same pattern of AITC release in response to SM amendment over the spectrum of soil water potentials examined in this study. Mycelial growth inhibition in fungi and oomycetes isolated from apple roots was dependent on both AITC concentration and exposure time. Pythium ultimum exhibited sensitivity to AITC at concentrations ranging from 0.01 to 0.22 µg g-1 of soil, whereas Hypocrea lixii was insensitive to AITC. Exposure to AITC at a concentration of 0.22 µg g-1 of soil for a period of 2 h restricted hyphal growth of Rhizoctonia solani AG-5, Ilyonectria destructans, and Mortierella alpina. R. solani AG-5 exhibited significant growth inhibition when incubated at AITC concentrations of 0.008 to 0.011 µg g-1 of soil for 10 h. These findings provide information that will be useful in the management of appropriate soil variables to obtain optimal yields of AITC in response to SM soil amendments and indicate that a standard soil moisture prescription may be suitable for use when applying this SM formulation for soilborne disease control.


Assuntos
Fungos , Isotiocianatos , Mostardeira , Solo , Fungos/fisiologia , Isotiocianatos/química , Mostardeira/química , Sementes/química , Solo/química , Microbiologia do Solo
9.
Phytopathology ; 109(8): 1378-1391, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30887889

RESUMO

An orchard field trial was conducted to assess the utility of reduced rate Brassicaceae seed meal (SM) amendment in concert with specific rootstock genotypes for effective control of apple replant disease. Three amendment rates of a 1:1 formulation of Brassica juncea-Sinapis alba SM were compared with preplant 1,3-dichloropropene/chloropicrin soil fumigation for disease control efficacy. When applied at the highest rate (6.6 t ha-1) in the spring of planting, SM caused significant phytotoxicity and tree mortality, which was higher for Gala/M.26 than for Gala/G.41 but was not observed at SM application rates of 2.2 or 4.4 t ha-1. SM treatment resulted in growth and yield increases of Gala/M.26 and Gala/G.41 trees in a manner similar to the fumigation treatment and significantly greater than the no treatment control. Tree growth in soils treated with SM at 4.4 t ha-1 was similar or superior to that obtained with SM at 6.6 t ha-1 and superior to that attained at an SM application rate of 2.2 t ha-1. Soil fumigation and all SM treatments reduced Pratylenchus penetrans root infestation relative to the control treatment at the end of the initial growing season. Lesion nematode root densities in the fumigation treatment, but not SM treatments, rapidly recovered and were indistinguishable from the control at the end of the second growing season. Soil fumigation and all SM treatments significantly suppressed Pythium spp. root infection relative to the control. Trees grafted to rootstock G.41 possessed lower P. penetrans root densities relative to trees grafted to rootstock M.26. One year after planting, composition of microbial communities from SM-amended soils was distinct from those detected in control and fumigated soils, and the differences were amplified with increasing SM application rate. Specific fungal and bacterial phyla associated with suppression of plant pathogens were more abundant in SM-treated soil relative to the control, and they were similar in abundance in 4.4- and 6.6-t ha-1 SM treatments. Findings from this study demonstrated that use of the appropriate apple rootstock genotype will allow for effective replant disease control at SM application rates significantly less than that utilized previously (6.6 t ha-1).


Assuntos
Malus , Microbiota , Animais , Genótipo , Malus/microbiologia , Malus/parasitologia , Doenças das Plantas , Sementes
10.
Plant Dis ; 103(3): 555-562, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664398

RESUMO

Members of the genera Neofabraea and Phlyctema have been reported to incite canker diseases of apple trees and a postharvest decay of apple fruit referred to as "bull's-eye rot." Neofabraea kienholzii was recently identified as participating in the bull's-eye rot disease complex of apple and other pome fruit. In this study, apple twigs inoculated with N. kienholzii were shown to develop symptoms of a canker disease closely resembling perennial canker of pome fruit trees caused by N. perennans. Cankers resulting from infection by either Neofabraea spp. were more likely to be induced when twig inoculations occurred in October, and to a lesser degree in April, compared with all other inoculation dates evaluated in this study. Although N. kienholzii tended to induce cankers that were smaller in size compared with N. perennans, both pathogens shared similar seasonal trends in the initiation and expansion of tree cankers. N. perennans and N. kienholzii were recovered from inoculated twigs 6 months postinoculation regardless of when inoculations were conducted, indicating that both pathogens can survive on diseased twigs year-round. In addition, acervuli were observed more often on twigs inoculated in September and April compared with those inoculated in other months. Data from this work should help further our understanding of the epidemiology of N. kienholzii. This information also highlights the importance of proper branch pruning, canker removal, and aphid control. Such management activities should be conducted in a manner that helps minimize further spread of the pathogen.


Assuntos
Ascomicetos , Malus , Animais , Ascomicetos/fisiologia , Frutas/microbiologia , Malus/microbiologia , Caules de Planta/microbiologia , Fatores de Tempo
11.
Phytopathology ; 109(4): 607-614, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30265201

RESUMO

Preplant soil application of a Brassica juncea-Sinapis alba seed meal formulation (SM) at a rate of 6.6 t ha-1 alters composition of the orchard soil microbiome in a manner that yields sustainable long-term suppression of soilborne pathogens in apple production systems. However, the cost of SM amendment has hindered the adoption of this tactic to manage apple replant disease in commercial orchards. Greenhouse trials were conducted to assess the effect of reduced SM application rates in concert with apple rootstock genotype on structure of the rhizosphere microbiome and associated disease control outcomes. At all application rates assessed, SM treatment increased tree growth and reduced disease development relative to the control. In general, total tree biomass and leader shoot length were similar in soils treated with SM at 4.4 or 6.6 t ha-1 regardless of rootstock genotype. Equivalent increase in tree biomass when cultivated in soil treated at the lowest and highest SM amendment rate was attained when used in conjunction with G.41 or G.210 apple rootstocks. Suppression of Pythium spp. or Pratylenchus penetrans root densities was similar at all SM application rates. When cultivated in nontreated replant orchard soil, Geneva rootstocks (G.41 and G.210) exhibited lower levels of Pythium spp. and P. penetrans root colonization relative to Malling rootstocks (M.9 and MM.106). For a given rootstock, structure of the rhizosphere microbiome was similar in soils treated with SM at 4.4 and 6.6 t ha-1. G.41 and G.210 rootstocks but not M.9 or MM.106 cultivated in soil treated with SM at 2.2 t ha-1 possessed a rhizosphere bacterial community structure that differed significantly from the control. Findings indicate that effective control of apple replant disease may be attained at lower SM amendment rates than employed previously, with lower effective rates possible when integrated with tolerant rootstock genotypes such as G.41 or G.210.


Assuntos
Brassicaceae , Malus , Microbiota , Raízes de Plantas , Pythium , Microbiologia do Solo , Tylenchoidea , Animais , Brassicaceae/microbiologia , Genótipo , Malus/genética , Malus/microbiologia , Malus/parasitologia , Doenças das Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Pythium/efeitos dos fármacos , Sementes , Solo , Tylenchoidea/efeitos dos fármacos
12.
Front Plant Sci ; 9: 1336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298076

RESUMO

Previous reports regarding rhizodeposits from apple roots are limited, and complicated by microbes, which readily colonize root systems and contribute to modify rhizodeposit metabolite composition. This study delineates methods for collection of apple rhizodeposits under axenic conditions, indicates rootstock genotype-specific differences and validates the contributions of vegetative activity to rhizodeposit quantity. Primary and phenolic rhizodeposit metabolites collected from two apple rootstock genotypes, G935 and M26, were delineated 2 months after root initiation by utilizing gas chromatography/liquid chromatography-mass spectrometry (GC/LC-MS), respectively. Twenty-one identified phenolic compounds and 29 sugars, organic acids, and amino acids, as well as compounds tentatively identified as triterpenoids were present in the rhizodeposits. When adjusted for whole plant mass, hexose, erythrose, galactose, phloridzin, kaempferol-3-glucoside, as well as glycerol, and glyceric acid differed between the genotypes. Phloridzin, phloretin, epicatechin, 4-hydroxybenzoic acid, and chlorogenic acid were among the phenolic compounds found in higher relative concentration in rhizodeposits, as assessed by LC-MS. Among primary metabolites assessed by GC-MS, amino acids, organic acids, and sugar alcohols found in relatively higher concentration in the rhizodeposits included L-asparagine, L-cysteine, malic acid, succinic acid, and sorbitol. In addition, putative ursane triterprenoids, identified based on accurate mass comparison to previously reported triterpenoids from apple peel, were present in rhizodeposits in high abundance relative to phenolic compounds assessed via the same extraction/instrumental method. Validation of metabolite production to tree vegetative activity was conducted using a separate set of micropropagated trees (genotype MM106) which were treated with a toxic volatile compound (butyrolactone) to inhibit activity/kill leaves and vegetative growth. This treatment resulted in a reduction of total collected rhizodeposits relative to an untreated control, indicating active vegetative growth contributes to rhizodeposit metabolites. Culture-based assays indicated an absence of bacterial or fungal endophytes in roots of micropropagated G935 and M26 plants. However, the use of fungi-specific primers in qPCR indicated the presence of fungal DNA in 30% of the samples, thus the contribution of endophytes to rhizodeposits cannot be fully eliminated. This study provides fundamental information for continued research and application of rhizosphere ecology driven by apple rootstock genotype specific rhizodeposition.

13.
Phytopathology ; 107(3): 256-263, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27898265

RESUMO

Biological disease control of soilborne plant diseases has traditionally employed the biopesticide approach whereby single strains or strain mixtures are introduced into production systems through inundative/inoculative release. The approach has significant barriers that have long been recognized, including a generally limited spectrum of target pathogens for any given biocontrol agent and inadequate colonization of the host rhizosphere, which can plague progress in the utilization of this resource in commercial field-based crop production systems. Thus, although potential exists, this model has continued to lag in its application. New omics' tools have enabled more rapid screening of microbial populations allowing for the identification of strains with multiple functional attributes that may contribute to pathogen suppression. Similarly, these technologies also enable the characterization of consortia in natural systems which provide the framework for construction of synthetic microbiomes for disease control. Harnessing the potential of the microbiome indigenous to agricultural soils for disease suppression through application of specific management strategies has long been a goal of plant pathologists. Although this tactic also possesses limitation, our enhanced understanding of functional attributes of suppressive soil systems through application of community and metagenomic analysis methods provide opportunity to devise effective resource management schemes. As these microbial communities in large part are fostered by the resources endemic to soil and the rhizosphere, substrate mediated recruitment of disease-suppressive microbiomes constitutes a practical means to foster their establishment in crop production systems.


Assuntos
Microbiota , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Agricultura , Agentes de Controle Biológico , Doenças das Plantas/microbiologia , Rizosfera , Solo
15.
Phytopathology ; 106(9): 1015-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27143411

RESUMO

The effect of carbon source on efficacy of anaerobic soil disinfestation (ASD) toward suppression of apple root infection by Rhizoctonia solani AG-5 and Pratylenchus penetrans was examined. Orchard grass (GR), rice bran (RB), ethanol (ET), composted steer manure (CM), and Brassica juncea seed meal (SM) were used as ASD carbon inputs, with plant assays conducted in natural and pasteurized orchard soils. Subsequent studies investigated the effect of GR application rate used in ASD on control of these pathogens. In general, apple root infection by R. solani AG-5 was significantly lower in ET, GR, RB, and SM ASD treatments compared with the control. Among different ASD treatments, apple seedling growth was significantly greater when GR or SM was used as the carbon input relative to all other ASD treatments. R. solani AG-5 DNA abundance was significantly reduced in all ASD treatments, regardless of amendment type, compared with the control. In independent experiments, ASD-GR was consistently superior to ASD-CM for limiting pathogen activity in soils. ASD treatment with a grass input rate of 20 t ha(-1) provided superior suppression of P. penetrans but grass application rate did not affect ASD efficacy in control of R. solani AG-5. The soil microbiome from ASD-GR-treated soils was clearly distinct from the control and ASD-CM-treated soils. In contrast, composition of the microbiome from control and ASD-CM-treated soils could not be differentiated. Comparative results from pasteurized and nonpasteurized soils suggest that there is potential for GR based ASD treatment to recruit microbial elements that persist over the anaerobic phase of soil incubation, which may functionally contribute to disease suppression. When ASD was conducted with GR, microbial diversity was markedly reduced relative to the control or ASD-CM soil suggesting that this parameter, typically associated with system resilience, was not instrumental to the function of ASD-induced soil suppressiveness.


Assuntos
Carbono/farmacologia , Malus/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Rhizoctonia/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Anaerobiose , Animais , Bovinos , Etanol , Fertilizantes , Masculino , Malus/microbiologia , Malus/parasitologia , Esterco , Mostardeira/química , Oryza/química , Pasteurização , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Poaceae/química , Rhizoctonia/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/microbiologia , Plântula/parasitologia , Solo/parasitologia , Microbiologia do Solo , Tylenchoidea/crescimento & desenvolvimento
16.
Sci Rep ; 5: 12837, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26246193

RESUMO

Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide protection against different protozoan genera. By combining whole-genome transcriptome analyses with (live) imaging mass spectrometry (IMS), we observed multiple changes in the molecular and chemical dialogues between Pseudomonas fluorescens and the protist Naegleria americana. Lipopeptide (LP) biosynthesis was induced in Pseudomonas upon protozoan grazing and LP accumulation transitioned from homogeneous distributions across bacterial colonies to site-specific accumulation at the bacteria-protist interface. Also putrescine biosynthesis was upregulated in P. fluorescens upon predation. We demonstrated that putrescine induces protozoan trophozoite encystment and adversely affects cyst viability. This multifaceted study provides new insights in common and strain-specific responses in bacteria-protozoa interactions, including responses that contribute to bacterial survival in highly competitive soil and rhizosphere environments.


Assuntos
Naegleria/genética , Naegleria/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Putrescina/metabolismo , Transcriptoma/fisiologia
17.
Phytopathology ; 105(4): 460-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25412009

RESUMO

Brassicaceae seed meal (SM) formulations were compared with preplant 1,3-dichloropropene/chloropicrin (Telone-C17) soil fumigation for the ability to control apple replant disease and to suppress pathogen or parasite reinfestation of organic orchard soils at two sites in Washington State. Preplant soil fumigation and an SM formulation consisting of either Brassica juncea-Sinapis alba or B. juncea-B. napus each provided similar levels of disease control during the initial growing season. Although tree growth was similar in fumigated and SM-amended soil during the initial growing season, tree performance in terms of growth and yield was commonly superior in B. juncea-S. alba SM-amended soil relative to that in fumigated soil at the end of four growing seasons. SM-amended soils were resistant to reinfestation by Pratylenchus penetrans and Pythium spp. relative to fumigated soils and corresponded with enhanced tree performance. Phytotoxic symptoms were observed in response to SM amendment at one of two orchard sites, were dependent upon season of application, and occurred in an SM formulation-specific manner. After 2 years, the rhizosphere microbiome in fumigated soils had reverted to one that was indistinguishable from the no-treatment control. In contrast, rhizosphere soils from the SM treatment possessed unique bacterial and fungal profiles, including specific microbial elements previously associated with suppression of plant-pathogenic fungi, oomycetes, and nematodes. Overall diversity of the microbiome was reduced in the SM treatment rhizosphere, suggesting that enhanced "biodiversity" was not instrumental in achieving system resistance or pathogen suppression.


Assuntos
Malus/imunologia , Microbiota , Mostardeira/química , Doenças das Plantas/imunologia , Sinapis/química , Compostos Alílicos/farmacologia , Animais , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Hidrocarbonetos Clorados/farmacologia , Malus/efeitos dos fármacos , Malus/crescimento & desenvolvimento , Malus/microbiologia , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/imunologia , Caules de Planta/microbiologia , Pythium/fisiologia , Rizosfera , Sementes/química , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Tylenchoidea/fisiologia , Washington
18.
ISME J ; 8(10): 2002-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24671087

RESUMO

Animals and plants are increasingly suffering from diseases caused by fungi and oomycetes. These emerging pathogens are now recognized as a global threat to biodiversity and food security. Among oomycetes, Saprolegnia species cause significant declines in fish and amphibian populations. Fish eggs have an immature adaptive immune system and depend on nonspecific innate defences to ward off pathogens. Here, meta-taxonomic analyses revealed that Atlantic salmon eggs are home to diverse fungal, oomycete and bacterial communities. Although virulent Saprolegnia isolates were found in all salmon egg samples, a low incidence of Saprolegniosis was strongly correlated with a high richness and abundance of specific commensal Actinobacteria, with the genus Frondihabitans (Microbacteriaceae) effectively inhibiting attachment of Saprolegniato salmon eggs. These results highlight that fundamental insights into microbial landscapes of fish eggs may provide new sustainable means to mitigate emerging diseases.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Doenças dos Peixes/microbiologia , Óvulo/microbiologia , Salmo salar/microbiologia , Saprolegnia , Animais , Doenças Transmissíveis Emergentes/microbiologia , Microbiota , Oomicetos/classificação , Oomicetos/isolamento & purificação , Salmo salar/embriologia , Saprolegnia/isolamento & purificação
19.
Hortic Res ; 1: 14043, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26504547

RESUMO

Apple replant disease (ARD) is a major limitation to the establishment of economically viable orchards on replant sites due to the buildup and long-term survival of pathogen inoculum. Several soilborne necrotrophic fungi and oomycetes are primarily responsible for ARD, and symptoms range from serious inhibition of growth to the death of young trees. Chemical fumigation has been the primary method used for control of ARD, and manipulating soil microbial ecology to reduce pathogen density and aggressiveness is being investigated. To date, innate resistance of apple rootstocks as a means to control this disease has not been carefully explored, partly due to the complex etiology and the difficulty in phenotyping the disease resistance. Molecular defense responses of plant roots to soilborne necrotrophic pathogens are largely elusive, although considerable progress has been achieved using foliar disease systems. Plant defense responses to necrotrophic pathogens consist of several interacting modules and operate as a network. Upon pathogen detection by plants, cellular signals such as the oscillation of Ca(2+) concentration, reactive oxygen species (ROS) burst and protein kinase activity, lead to plant hormone biosynthesis and signaling. Jasmonic acid (JA) and ethylene (ET) are known to be fundamental to the induction and regulation of defense mechanisms toward invading necrotrophic pathogens. Complicated hormone crosstalk modulates the fine-tuning of transcriptional reprogramming and metabolic redirection, resulting in production of antimicrobial metabolites, enzyme inhibitors and cell wall refortification to restrict further pathogenesis. Transcriptome profiling of apple roots in response to inoculation with Pythium ultimum demonstrated that there is a high degree of conservation regarding the molecular framework of defense responses compared with those observed with foliar tissues. It is conceivable that the timing and intensity of genotype-specific defense responses may lead to different outcomes between rootstocks in response to invasion by necrotrophic pathogens. Elucidation of host defense mechanisms is critical in developing molecular tools for genomics-assisted breeding of resistant apple rootstocks. Due to their perennial nature, use of resistant rootstocks as a component for disease management might offer a durable and cost-effective benefit to tree performance than the standard practice of soil fumigation for control of ARD.

20.
Hortic Res ; 1: 14053, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26504552

RESUMO

Apple replant disease (ARD) is a significant economic restraint to the successful re-establishment of new apple orchards on sites previously planted to the same crop. Pythium ultimum, an oomycete, is a significant component of the ARD pathogen complex. Although ethylene (ET)- and jasmonic acid (JA)-mediated defense responses are intensively studied in the foliar pathosystem, the transferability of this knowledge to the interaction between a perennial root system and soilborne pathogens is unknown. The aim of this study was to test the hypothesis that the ET/JA-mediated defense response is conserved in roots of tree crops in response to infection by P. ultimum. Apple genes with the annotated function of ET/JA biosynthesis, MdERF (ethylene response factor) for signaling transduction and a gene encoding a pathogenesis-related (PR) protein (ß-chitinase, the target of ERF) were identified from the apple genome sequences. The transcriptional profiles of these genes during P. ultimum infection and after exogenous ET and/or JA treatment were characterized using qRT-PCR. Several genes showed a 10- to 60-fold upregulation in apple root tissue 24-48 h post inoculation (hpi). Exogenous ET and JA treatment exhibited either a positive or negative influence on expression of ET or JA biosynthesis genes, depending upon gene isoforms and the tissue types, while the expression of MdERF and the PR protein encoding gene was upregulated by both ET and JA treatment. Our data are consistent with the hypothesis that ET/JA-mediated defense pathways are functional in the root system of perennial tree species defending soilborne pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...