Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 388(10): 1061-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051407

RESUMO

The functional responses of different overnight-stored in vitro tissues are not clearly described in any animal model. The influence of overnight storage in an animal model may vary between tissue types. We employed Sprague-Dawley rat as our animal model and investigated the functional changes of rat aorta, trachea, bronchus and bladder that were used (i) immediately after surgical removal (denoted as fresh) and (ii) after storage in aerated (95% O2, 5% CO2) Krebs-Ringer bicarbonate solution at 4 °C for 24 h (denoted as stored). The aorta ring was pre-contracted with phenylephrine, and the functional response of the tissue was investigated using isoprenaline, forskolin and carbachol. Carbachol was also used to increase the tone in trachea, bronchus rings and bladder strips. A clear reduced function of endothelium, with a minor if any effect in the smooth muscle function in rat aorta was observed after overnight storage. The contractile response of overnight-stored rat airway (trachea and bronchus) and bladder smooth muscles remained unchanged. Among all tested tissues, only bronchus showed a reduced response rate (only 40% responded) after storage. In vitro rat tissues that are stored in Krebs solution at 4 °C for 24 h can still be used to investigate smooth muscle responses, however, not endothelium-mediated responses for aorta. The influence of overnight storage on different tissues from an animal model (Sprague-Dawley rat in our study) also provides an insight in maximising the use of sacrificed animals.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Animais , Carbacol/farmacologia , Colforsina/farmacologia , Endotélio Vascular/metabolismo , Isoproterenol/farmacologia , Masculino , Modelos Animais , Músculo Liso/metabolismo , Músculo Liso Vascular/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Preservação de Tecido/métodos
2.
Br J Pharmacol ; 155(3): 343-56, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18604238

RESUMO

BACKGROUND AND PURPOSE: Micturition is controlled by central 5-HT-containing pathways. 5-HT2 receptors have been implicated in this system especially in control of the urethra, which is a drug target for treating urinary incontinence. This study investigates the role of each of the three subtypes of this receptor with emphasis on sphincter regulation. EXPERIMENTAL APPROACH: Recordings of urethral and bladder pressure, external urethral sphincter (EUS) EMG, as well as the micturition reflex induced by bladder distension along with blood pressure and heart rate were made in anaesthetized rats. The effects of agonists and antagonists for 5-HT2 receptor subtypes were studied on these variables. KEY RESULTS: The 5-HT2C agonists Ro 60-0175, WAY 161503 and mCPP, i.v., activated the EUS, increased urethral pressure and inhibited the micturition reflex. The effects of Ro 60-0175 on the EUS were blocked by the 5-HT2C antagonist SB 242084 and the 5-HT2A antagonists, ketanserin and MDL 100907. SB 242084 also blocked the inhibitory action on the reflex, while the 5-HT2B antagonist RS 127445 only blocked the increase in urethral pressure. The 5-HT2A receptor agonist DOI given i.v. or i.t. but not i.c.v. activated the EUS. CONCLUSIONS AND IMPLICATIONS: 5-HT2A/2C receptors located in the sacral spinal cord activate the EUS, while central 5-HT2C receptors inhibit the micturition reflex and 5-HT2B receptors, probably at the level of the urethra, increase urethral smooth muscle tone. Furthermore, 5-HT2B and 5-HT2C receptors do not seem to play an important role in the physiological regulation of micturition.


Assuntos
Receptor 5-HT2A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Bexiga Urinária/metabolismo , Micção/fisiologia , Animais , Feminino , Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Medula Espinal/fisiologia , Uretra/metabolismo , Micção/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...