Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 19: e00568, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39291286

RESUMO

Loop-Mediated Isothermal Amplification (LAMP) is a useful technique for detecting infectious microorganisms in human fluids since it performs similarly to conventional PCR, the results are obtained faster and no thermocyclers or complex devices are required. Since only two isothermal blocks (95 °C to lyse cells and 65 °C for DNA amplification) are needed, LAMP is particularly suited for applications in Low- and Middle-Income Countries (LMICs). To validate such assumption, we first designed and tested Arduino-controlled LAMP thermoblocks to process a considerable number of samples simultaneously with a low-energy consumption to enable routine use under worst-case conditions (no main power source and low ambient temperatures). The thermoblocks were tested when battery-powered at temperature down to 5 °C, showing high stability in well temperatures (<0.8 °C). The charge required for both thermoblocks to simultaneously achieve the target temperatures after switching on and to keep their working temperatures were 4.1 A·h and 2.4 A·h/h, respectively. Second, we implemented a low-cost viewer with LEDs and filters to detect the fluorescent LAMP reaction. All the components required for the instrument are for general purpose and readily available by e-commerce. Thus, the LAMP device allows for considerable autonomy by using a typical car battery in rural and itinerant healthcare or field hospitals in LMICs, even under difficult environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA