Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12684, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830920

RESUMO

Climate change is recognised to lead to spatial shifts in the distribution of small pelagic fish, likely by altering their environmental optima. Fish supply along the Northwest African coast is significant at both socio-economic and cultural levels. Evaluating the impacts of climatic change on small pelagic fish is a challenge and of serious concern in the context of shared stock management. Evaluating the impact of climate change on the distribution of small pelagic fish, a trend analysis was conducted using data from 2363 trawl samplings and 170,000 km of acoustics sea surveys. Strong warming is reported across the Southern Canary Current Large Marine Ecosystem (CCLME), extending from Morocco to Senegal. Over 34 years, several trends emerged, with the southern CCLME experiencing increases in both wind speed and upwelling intensity, particularly where the coastal upwelling was already the strongest. Despite upwelling-induced cooling mechanisms, sea surface temperature (SST) increased in most areas, indicating the complex interplay of climatic-related stressors in shaping the marine ecosystem. Concomitant northward shifts in the distribution of small pelagic species were attributed to long-term warming trends in SST and a decrease in marine productivity in the south. The abundance of Sardinella aurita, the most abundant species along the coast, has increased in the subtropics and fallen in the intertropical region. Spatial shifts in biomass were observed for other exploited small pelagic species, similar to those recorded for surface isotherms. An intensification in upwelling intensity within the northern and central regions of the system is documented without a change in marine primary productivity. In contrast, upwelling intensity is stable in the southern region, while there is a decline in primary productivity. These environmental differences affected several small pelagic species across national boundaries. This adds a new threat to these recently overexploited fish stocks, making sustainable management more difficult. Such changes must motivate common regional policy considerations for food security and sovereignty in all West African countries sharing the same stocks.


Assuntos
Mudança Climática , Ecossistema , Peixes , Segurança Alimentar , Animais , Peixes/fisiologia , Pesqueiros , Temperatura
3.
Sci Rep ; 11(1): 16698, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404822

RESUMO

Artificial reefs (ARs) are one of the most popular means of supporting marine ecosystem conservation and coastal fisheries, particularly in developing countries. However, ARs generate complex socio-bio-economic interactions that require careful evaluation. This is particularly the case for ARs outside no-take zones, where fish might be subject to enhanced exploitation due to easier catchability. Here, we conducted an interdisciplinary study on how ARs impact fish and fishing yields, combining mathematical and sociological approaches. Both approaches converge to confirm that fishery yields decline when ARs are exploited as if they were open access areas. This situation typically occurs in areas with weak governance and/or high levels of illegal fishing activity, both of which are common in many developing countries. To avoid these adverse effects and their associated ecological consequences, we recommend prioritizing the onset of a long-term surveillance system against illegal fishing activities, and adapting design and location of the ARs based on both and local and academic knowledge, before the deployment of ARs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...