Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 17(1): 133-145, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-32614696

RESUMO

Inactivated influenza vaccines are known to be less immunogenic in human elderly in regards to serologic antibody response induced by vaccination. Accumulating evidence, however, points to a comparable effectiveness of influenza vaccines in the young and the elderly individuals. In the current study, we assessed immunogenicity and effectiveness of trivalent inactivated vaccine FluLaval in young and aged cotton rats Sigmodon hispidus and found that while serologic response to immunization was indeed reduced in older animals, comparable protection against influenza infection was afforded by prime-boost vaccination in both young and aged cotton rats. Both hemagglutination inhibition (HAI) titers and seroconversion rates were lower in the aged animals compared to the young ones. Reduction of viral load in the lung and nose, however, was comparable between young and aged animals vaccinated twice. One-time immunization with FluLaval was less efficacious at protecting the nose of aged animals, indicating that boosting of preexisting immunity can be particularly important for nasal protection in the elderly. Coincidentally, a one-time immunization with FluLaval had a detrimental effect on pulmonary pathology in the young animals, suggesting that boosting of immunity is essential for the young as well. Overall, these results suggest that reduced antibody response to and sufficient efficacy of influenza vaccines in the elderly are not two irreconcilable phenomena and that incomplete immunity to influenza can be detrimental at any age.


Assuntos
Vacinas contra Influenza , Influenza Humana , Envelhecimento , Animais , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Sigmodontinae , Vacinas de Produtos Inativados
2.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597775

RESUMO

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Cerebelo/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/patologia , Encefalite/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/imunologia , Prosencéfalo/patologia , Prosencéfalo/virologia , Sigmodontinae , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação , Carga Viral/efeitos dos fármacos
3.
J Virol ; 89(19): 9825-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178984

RESUMO

UNLABELLED: Subunit vaccines based on the herpes simplex virus 2 (HSV-2) glycoprotein D (gD-2) have been the major focus of HSV-2 vaccine development for the past 2 decades. Based on the promising data generated in the guinea pig model, a formulation containing truncated gD-2, aluminum salt, and MPL (gD/AS04) advanced to clinical trials. The results of these trials, however, were unexpected, as the vaccine protected against HSV-1 infection but not against HSV-2. To address this discrepancy, we developed a Depot medroxyprogesterone acetate (DMPA)-treated cotton rat Sigmodon hispidus model of HSV-2 and HSV-1 genital infection. The severity of HSV-1 genital herpes was less than that of HSV-2 genital herpes in cotton rats, and yet the model allowed for comparative evaluation of gD/AS04 immunogenicity and efficacy. Cotton rats were intramuscularly vaccinated using a prime boost strategy with gD/AS04 (Simplirix vaccine) or control vaccine formulation (hepatitis B vaccine FENDrix) and subsequently challenged intravaginally with HSV-2 or HSV-1. The gD/AS04 vaccine was immunogenic in cotton rats and induced serum IgG directed against gD-2 and serum HSV-2 neutralizing antibodies but failed to efficiently protect against HSV-2 disease or to decrease the HSV-2 viral load. However, gD/AS04 significantly reduced vaginal titers of HSV-1 and better protected animals against HSV-1 compared to HSV-2 genital disease. The latter finding is generally consistent with the clinical outcome of the Herpevac trial of Simplirix. Passive transfer of serum from gD/AS04-immunized cotton rats conferred stronger protection against HSV-1 genital disease. These findings suggest the need for alternative vaccine strategies and the identification of new correlates of protection. IMPORTANCE: In spite of the high health burden of genital herpes, there is still no effective intervention against the disease. The significant gap in knowledge on genital herpes pathogenesis has been further highlighted by the recent failure of GSK HSV-2 vaccine Simplirix (gD/AS04) to protect humans against HSV-2 and the surprising finding that the vaccine protected against HSV-1 genital herpes instead. In this study, we report that gD/AS04 has higher efficacy against HSV-1 compared to HSV-2 genital herpes in the novel DMPA-synchronized cotton rat model of HSV-1 and HSV-2 infection. The findings help explain the results of the Simplirix trial.


Assuntos
Modelos Animais de Doenças , Herpes Genital/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Sigmodontinae , Proteínas do Envelope Viral/farmacologia , Vacinas Virais/farmacologia , Hidróxido de Alumínio , Compostos de Anilina , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Injeções Intramusculares , Lipídeo A/análogos & derivados , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/farmacologia , Proteínas do Envelope Viral/administração & dosagem , Vacinas Virais/administração & dosagem
4.
J Virol ; 87(8): 4330-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365443

RESUMO

Influenza A virus (IAV) infects a remarkably wide variety of avian and mammalian hosts. Evolution finely hones IAV genes to optimally infect and be transmitted in a particular host species. Sporadically, IAV manages to jump between species, introducing novel antigenic strains into the new host population that wreak havoc until herd immunity develops. IAV adaptation to new hosts typically involves reassortment of IAV gene segments from coinfecting virus strains adapted to different hosts in conjunction with multiple adaptive mutations in the various IAV genes. To better understand host adaptation between mammalian species in real time, we passaged mouse-adapted A/PR8/34 (PR8) in guinea pigs. Guinea pigs, unlike mice, support spontaneous and robust IAV transmission. For some IAV strains, including PR8, adaptation is required for a virus to attain transmissibility, providing an opportunity to understand the evolution of transmissibility in guinea pigs. Multiple guinea pig-adapted PR8 mutants generated by serial nasal wash passaging in independent lines replicated more efficiently and were transmitted by cocaging. All transmissible variants possessed one of two nonsynonymous mutations in M1, either alone or in combination with mutations in PB2, HA, NP, or NA. Rapid reassortment between independently selected variants combined beneficial mutations in NP and M1 to form the fittest virus capable of being transmitted. These findings provide further insight into genetic determinants in NP and M1 involved in PR8 IAV adaptation to be transmitted in a new host and clearly show the benefit of a segmented genome in rapidly generating optimal combinations of mutations in IAV evolution.


Assuntos
Adaptação Biológica , Vírus da Influenza A/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA/genética , Recombinação Genética , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/genética , Animais , Modelos Animais de Doenças , Feminino , Cobaias , Camundongos , Cavidade Nasal/virologia , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Inoculações Seriadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...