Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Virol ; 2023: 6374874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234693

RESUMO

Background: In 1995, the hepatitis B vaccine in South Africa was incorporated into the childhood expanded programme of immunization. We report on immunity gaps of laboratory-based hepatitis B virus (HBV) among patients in public facilities in Gauteng Province from 1st January 2014 to 31st December 2019. Methodology. We analyzed HBV serological data extracted from the National Health Laboratory Services Central Data Warehouse (NHLS CDW). A descriptive analysis was performed for hepatitis B surface antigen (HBsAg), antibodies to HBV core (anti-HBc) total, anti-HBc IgM, and antibodies to HBV surface antigen (anti-HBs) according to annual distribution, age groups, and sex. Results: The HBsAg positivity rate was 7.0% (75,596/1,095,561; p=0.001): 7.4% (96,532/944,077) in the 25 years and over age group and 4.0% (358/9,268 and 325/10,864) in the under 5 and 13-24 year age groups. The positivity rates of the other HBV serological markers were as follows: anti-HBc total was 37.0% (34,377/93,711; p < 0.001), anti-HBc IgM was 2.4% (5,661/239,237; p=0.05), and anti-HBs was 37.0% (76,302/206,138; p ≤ 0.001). Naturally acquired HBV immunity was detected in 25.7% (11,188/43,536) of patients in the 25 years and over age group, and 9.7% and 8.2% (113/1,158 and 541/6,522) among those under 5 years and 13-24 year age group, respectively (p < 0.001). Vaccine-induced immunity was 56.6% (656/1,158) in children under 5 years and 10.2% (4,425/43,536) among those 25 years and above (p < 0.001). Fifty-six percent (29,404/52,581) of patients were HBV seronegative; predominantly among patients in the 13-24 year age group (60.6%; (3,952/6,522)) and 25 years and over (56.3% (24,524/43,536)) (p=<0.001). Conclusion: The HBV infection seroprevalence remains high in South Africa, with Gauteng province having high intermediate endemicity. However, the HBV immunity gap has shifted from younger children to older children and adults.

2.
PLoS One ; 18(5): e0286373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253027

RESUMO

Intra-host diversity studies are used to characterise the mutational heterogeneity of SARS-CoV-2 infections in order to understand the impact of virus-host adaptations. This study investigated the frequency and diversity of the spike (S) protein mutations within SARS-CoV-2 infected South African individuals. The study included SARS-CoV-2 respiratory samples, from individuals of all ages, received at the National Health Laboratory Service at Charlotte Maxeke Johannesburg Academic hospital, Gauteng, South Africa, from June 2020 to May 2022. Single nucleotide polymorphism (SNP) assays and whole genome sequencing were performed on a random selection of SARS-CoV-2 positive samples. The allele frequency (AF) was determined using TaqMan Genotyper software for SNP PCR analysis and galaxy.eu for analysis of FASTQ reads from sequencing. The SNP assays identified 5.3% (50/948) of Delta cases with heterogeneity at delY144 (4%; 2/50), E484Q (6%; 3/50), N501Y (2%; 1/50) and P681H (88%; 44/50), however only heterogeneity for E484Q and delY144 were confirmed by sequencing. From sequencing we identified 9% (210/2381) of cases with Beta, Delta, Omicron BA.1, BA.2.15, and BA.4 lineages that had heterogeneity in the S protein. Heterogeneity was primarily identified at positions 19 (1.4%) with T19IR (AF 0.2-0.7), 371 (92.3%) with S371FP (AF 0.1-1.0), and 484 (1.9%) with E484AK (0.2-0.7), E484AQ (AF 0.4-0.5) and E484KQ (AF 0.1-0.4). Mutations at heterozygous amino acid positions 19, 371 and 484 are known antibody escape mutations, however the impact of the combination of multiple substitutions identified at the same position is unknown. Therefore, we hypothesise that intra-host SARS-CoV-2 quasispecies with heterogeneity in the S protein facilitate competitive advantage of variants that can completely/partially evade host's natural and vaccine-induced immune responses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , África do Sul/epidemiologia , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética
3.
J Med Virol ; 94(8): 3676-3684, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35441368

RESUMO

The circulation of Omicron BA.1 led to the rapid increase in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases in South Africa in November 2021, which warranted the use of more rapid detection methods. We, therefore, assessed the ability to detect Omicron BA.1 using genotyping assays to identify specific mutations in SARS-CoV-2 positive samples, Gauteng province, South Africa. The TaqPath™ COVID-19 real-time polymerase chain reaction assay was performed on all samples selected to identify spike gene target failure (SGTF). SARS-CoV-2 genotyping assays were used for the detection of del69/70 and K417N mutation. Whole-genome sequencing was performed on a subset of genotyped samples to confirm these findings. Of the positive samples received, 11.0% (175/1589) were randomly selected to assess if SGTF and genotyping assays, that detect del69/70 and K417N mutations, could identify Omicron BA.1. We identified SGTF in 98.9% (173/175) of samples, of which 88.0% (154/175) had both the del69/70 and K417N mutation. The genotyped samples (45.7%; 80/175) that were sequenced confirmed Omicron BA.1 (97.5%; 78/80). Our data show that genotyping for the detection of the del69/70 and K417N coupled with SGTF is efficient to exclude Alpha and Beta variants and rapidly detect Omicron BA.1. However, we still require assays for the detection of unique mutations that will allow for the differentiation between other Omicron sublineages. Therefore, the use of genotyping assays to detect new dominant or emerging lineages of SARS-CoV-2 will be beneficial in limited-resource settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genótipo , Humanos , SARS-CoV-2/genética , África do Sul , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...