Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
medRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947021

RESUMO

Nigeria and Cameroon reported their first mpox cases in over three decades in 2017 and 2018 respectively. The outbreak in Nigeria is recognised as an ongoing human epidemic. However, owing to sparse surveillance and genomic data, it is not known whether the increase in cases in Cameroon is driven by zoonotic or sustained human transmission. Notably, the frequency of zoonotic transmission remains unknown in both Cameroon and Nigeria. To address these uncertainties, we investigated the zoonotic transmission dynamics of the mpox virus (MPXV) in Cameroon and Nigeria, with a particular focus on the border regions. We show that in these regions mpox cases are still driven by zoonotic transmission of a newly identified Clade IIb.1. We identify two distinct zoonotic lineages that circulate across the Nigeria-Cameroon border, with evidence of recent and historic cross border dissemination. Our findings support that the complex cross-border forest ecosystems likely hosts shared animal populations that drive cross-border viral spread, which is likely where extant Clade IIb originated. We identify that the closest zoonotic outgroup to the human epidemic circulated in southern Nigeria in October 2013. We also show that the zoonotic precursor lineage circulated in an animal population in southern Nigeria for more than 45 years. This supports findings that southern Nigeria was the origin of the human epidemic. Our study highlights the ongoing MPXV zoonotic transmission in Cameroon and Nigeria, underscoring the continuous risk of MPXV (re)emergence.

2.
medRxiv ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38947052

RESUMO

Five years before the 2022-2023 global mpox outbreak Nigeria reported its first cases in nearly 40 years, with the ongoing epidemic since driven by sustained human-to-human transmission. However, limited genomic data has left questions about the timing and origin of the mpox virus' (MPXV) emergence. Here we generated 112 MPXV genomes from Nigeria from 2021-2023. We identify the closest zoonotic outgroup to the human epidemic in southern Nigeria, and estimate that the lineage transmitting from human-to-human emerged around July 2014, circulating cryptically until detected in September 2017. The epidemic originated in Southern Nigeria, particularly Rivers State, which also acted as a persistent and dominant source of viral dissemination to other states. We show that APOBEC3 activity increased MPXV's evolutionary rate twenty-fold during human-to-human transmission. We also show how Delphy, a tool for near-real-time Bayesian phylogenetics, can aid rapid outbreak analytics. Our study sheds light on MPXV's establishment in West Africa before the 2022-2023 global outbreak and highlights the need for improved pathogen surveillance and response.

4.
Res Sq ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38883750

RESUMO

Background: The incidence of oropharyngeal candidiasis among people living with human immunodeficiency virus in Africa is on the rise. Oropharyngeal candidiasis is mainly caused by C.albicans; however, a shift in the etiology towards non-Candida albicans species is increasing. In addition, there are variations in the epidemiological distribution of Candida species causing oropharyngeal candidiasis among people living with human immunodeficiency virus in Africa. Objective: This review aimed to determine the prevalence of oropharyngeal candidiasis and the distribution of Candida species among people living with human immunodeficiency virus in Africa. Materials and Methods: This systematic review protocol was registered in the base PROSPERO database prior to its conduct (CRD42021254473). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol guidelines (PRISMA-P) were followed for this study. The PubMed, Scopus and EMBASE databases were searched to identify published studies published between 1st January 2000 and 8th October 2022. The eligible studies were included in the meta-analysis and analyzed using a random effects model. The risk of bias of the included studies was assessed using the Joanna Briggs Institute quality assessment tool for prevalence studies. Results: The database search yielded 370 titles from PubMed (n=192), EMBASE (n=162) and SCOPUS (n=16). Fourteen studies with a total of 3,863 participants were included in the meta-analysis. The pooled prevalence of oropharyngeal candidiasis was 49.0% (95% CI: 37% - 62%). A total of 2,688 Candida isolates were reported; approximately 76.6% (n=2,060) were C. albicans, and 21.7% (n=582) were non-C. albicans. Among the non-Candida albicans species, C. glabrata was the most common isolate (29.6%), followed by C. tropicalis (27.7%), C. krusei (17.0%), C. parapsilosis (8.1%) and C. dubliniensis (5.2%). Out of 14 studies, 7 (50.0%) had a low risk of bias, 5 (35.7%) had a moderate risk of bias, and 2 (14.3%) had a high risk of bias. Conclusion: Almost half of people living with HIV in Africa have oropharyngeal candidiasis, and C. albicans remains the most frequent cause of oropharyngeal candidiasis.

5.
J Infect Dis ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874098

RESUMO

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Co-infection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G and K540E) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in two previously little-studied countries.

7.
Ther Adv Infect Dis ; 11: 20499361241255261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812710

RESUMO

Background: Despite the increased frequency of oropharyngeal candidiasis among people living with human immunodeficiency virus (HIV), its management is no longer effective due to empirical treatment and emergence of antifungal resistance (AFR). This study sought to investigate the prevalence of oropharyngeal candidiasis and assess the antifungal susceptibility profile of oropharyngeal Candida species isolated from people living with human immunodeficiency virus. Additionally, we evaluated the correlation between oropharyngeal candidiasis and CD4 T cell as well as viral load counts. Methods: A descriptive cross-sectional study was carried out from April to October 2023 in which 384 people living with HIV underwent clinical examination for oral lesions. Oropharyngeal swabs were collected and cultured on Sabouraud Dextrose agar to isolate Candida species which were identified using the matrix assisted laser desorption ionization time of flight mass spectrometry. Additionally, the antifungal susceptibility profile of Candida isolates to six antifungal drugs was determined using VITEK® (Marcy-l'Étoile, France) compact system. Data on viral load were retrieved from records, and CD4 T cell count test was performed using Becton Dickinson Biosciences fluorescent antibody cell sorter presto. Results: The prevalence of oropharyngeal candidiasis was 7.6%. Oropharyngeal candidiasis was significantly associated with low CD4 T cell count and high viral load. A total of 35 isolates were obtained out of which Candida albicans comprised of 20 (57.1%) while C. tropicalis and C. glabrata comprised 4 (11.4%) each. C. parapsilosis, C. dubliniensis and C. krusei accounted for 2 (5.7%) each. Additionally, 7 (20%) isolates were resistant to fluconazole, 1 (2.9%) to flucytocine and 0.2 (5.7%) isolates were intermediate to caspofungin. However, specific specie isolates like C. albicans showed 20% (4/20), C. glabrata 50% (2/4) and C. krusei 50% (1/2) resistance to fluconazole. Additionally, C. krusei showed 50% resistance to flucytosine. Conclusion: The prevalence of oropharyngeal candidiasis (OPC) among people living with HIV was low, and there was a significant association between OPC and CD4 T cell count as well as viral load. C. albicans was the most frequently isolated oropharyngeal Candida species. C. glabrata and C. krusei exhibited the highest AFR among the non-albicans Candida species. The highest resistance was demonstrated to fluconazole.

8.
Res Sq ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766148

RESUMO

Background: Oropharyngeal Candida species are part commensal microflora in the the oral cavity of health individuals. Commensal Candida species can become opportunist and transition to pathogenic causes of oropharyngeal candidiasis (OPC) in individuals with impaired immunity through ecological cues and expression of virulence factors. Limited studies have evaluated virulence attributes of oropharyngeal Candida species among people living with human immunodeficiency virus (PLHIV) with OPC on antiretroviral therapy (ART) in Uganda. Objective: Evaluation of the Virulence Attributes of Oropharyngeal Candida Species Isolated from People Living with Human Immunodeficiency Virus with Oropharyngeal Candidiasis on Antiretroviral Therapy. Methods: Thirty-five (35) Candida isolates from PLHIV with OPC on ART were retrieved from sample repository and evaluated for phospholipase activity using the egg yolk agar method, proteinase activity using the bovine serum albumin agar method, hemolysin activity using the blood agar plate method, esterase activity using the Tween 80 opacity test medium method, coagulase activity using the classical tube method and biofilm formation using the microtiter plate assay method in vitro. Results: Phospholipase and proteinase activities were detected in 33/35 (94.3%) and 31/35 (88.6%) of the strains, respectively. Up to 25/35 (71.4%) of the strains exhibited biofilm formation while esterase activity was demonstrated in 23/35 (65.7%) of the strains. Fewer isolates 21/35 (60%) of the strains produced hemolysin and coagulase production was the least virulence activity detected in 18/35 (51.4%). Conclusion: Phospholipase and proteinase activities were the strongest virulence attributes of oropharyngeal Candida species.

9.
Infect Dis Poverty ; 13(1): 26, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486340

RESUMO

We look at the link between climate change and vector-borne diseases in low- and middle-income countries in Africa. The large endemicity and escalating threat of diseases such as malaria and arboviral diseases, intensified by climate change, disproportionately affects vulnerable communities globally. We highlight the urgency of prioritizing research and development, advocating for robust scientific inquiry to promote adaptation strategies, and the vital role that the next generation of African research leaders will play in addressing these challenges. Despite significant challenges such as funding shortages within countries, various pan-African-oriented funding bodies such as the African Academy of Sciences, the Africa Research Excellence Fund, the Wellcome Trust, the U.S. National Institutes of Health, and the Bill and Melinda Gates Foundation as well as initiatives such as the African Research Initiative for Scientific Excellence and the Pan-African Mosquito Control Association, have empowered (or are empowering) these researchers by supporting capacity building activities, including continental and global networking, skill development, mentoring, and African-led research. This article underscores the urgency of increased national investment in research, proposing the establishment of research government agencies to drive evidence-based interventions. Collaboration between governments and scientific communities, sustained by pan-African funding bodies, is crucial. Through these efforts, African nations are likely to enhance the resilience and adaptive capacity of their systems and communities by navigating these challenges effectively, fostering scientific excellence and implementing transformative solutions against climate-sensitive vector-borne diseases.


Assuntos
Malária , Humanos , África/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Pesquisadores , Mudança Climática , Fortalecimento Institucional
10.
Ann Hum Genet ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517013

RESUMO

Equity in access to genomic technologies, resources, and products remains a great challenge. This was evident especially during the coronavirus disease 2019 (COVID-19) pandemic when the majority of lower middle-income countries were unable to achieve at least 10% population vaccination coverage during initial COVID-19 vaccine rollouts, despite the rapid development of those vaccines. Sickle cell disease (SCD) is an inherited monogenic red blood cell disorder that affects hemoglobin, the protein that carries oxygen through the body. Globally, the African continent carries the highest burden of SCD with at least 240,000 children born each year with the disease. SCD has evolved from a treatable to a curable disease. Recently, the UK medical regulator approved its cure through clustered regularly interspaced short palindromic repeat (CRISPR)-based treatment, whereas the US Food and Drug Administration has equally approved two SCD gene therapies. This presents a remarkable opportunity to demonstrate equity in public health genomics. This CRISPR-based treatment is expensive and therefore, a need for an ambitious action to ensure that they are affordable and accessible where they are needed most and stand to save millions of lives.

11.
BMC Genomics ; 25(1): 287, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500034

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. RESULTS: Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. CONCLUSION: As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Ampicilina , Cefotaxima , Aprendizado de Máquina , Nigéria
12.
Sci Rep ; 13(1): 22182, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092870

RESUMO

Childhood HBV immunization remains globally fundamental to the elimination of hepatitis B virus (HBV). However, monitoring proportions of HBV vaccine seroprotection and their determinants among African Pediatric recipients is crucial. This study sought to verify extent of immune protection accorded by the HBV vaccine in African children of up to 17 years of age by pooling the prevalence of seroprotection reported by primary studies conducted in the Northern, Western, and Southern African regions. We included 19 eligible articles out of the 197 initially downloaded, published from 1999 to 2021 from African Journals Online (AJOL), EMBASE, Scopus, and PubMed. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO), University of York Centre for Reviews and Dissemination, under the registration number CRD42022361277. Significantly higher (p < 0.0001) proportion of HBV vaccine seroprotection (69.07%) was found among children under 15 years of age than children 15-17 years (32.368%), 95% CI [34.2454-39.0847%]. Whereas successful integration of the HBV vaccine on the extended programs on immunizations (EPI) has been a major achievement in the reduction of HBV infection in Africa, markedly reduced HBV vaccine seroprotection is persistently demonstrated among adolescent children 15-17 years of age. Future studies are required to clarify the need for booster dose vaccination in most at risk populations and age groups.


Assuntos
Vacinas contra Hepatite B , Hepatite B , Adolescente , Criança , Humanos , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B
13.
BMC Infect Dis ; 23(1): 654, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789281

RESUMO

Antimicrobial resistance (AMR) was a leading cause of death globally in 2019. Sadly, COVID-19 has exacerbated AMR, nonetheless, the process of developing new antibiotics remains very challenging. This urgently requires the adoption of alternative approaches to treat multi-drug-resistant bacterial infections. This editorial introduces the 'Bacteriophages against multi-drug resistant bacteria' collection launched at BMC Infectious Diseases which highlights progress towards using bacteriophages to tackle AMR.


Assuntos
Infecções Bacterianas , Bacteriófagos , COVID-19 , Humanos , Farmacorresistência Bacteriana Múltipla , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana
14.
BMC Infect Dis ; 23(1): 587, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679664

RESUMO

Escherichia coli significantly causes nosocomial infections and rampant spread of antimicrobial resistance (AMR). There is limited data on genomic characterization of extended-spectrum ß-lactamase (ESBL)-producing E. coli from African clinical settings. This hospital-based longitudinal study unraveled the genetic resistance elements in ESBL E. coli isolates from Uganda and Tanzania using whole-genome sequencing (WGS). A total of 142 ESBL multi-drug resistant E. coli bacterial isolates from both Tanzania and Uganda were sequenced and out of these, 36/57 (63.1%) and 67/85 (78.8%) originated from Uganda and Tanzania respectively. Mutations in RarD, yaaA and ybgl conferring resistances to chloramphenicol, peroxidase and quinolones were observed from Ugandan and Tanzanian isolates. We reported very high frequencies for blaCTX-M-15 with 11/18(61.1%), and blaCTX-M-27 with 12/23 (52.1%), blaTEM-1B with 13/23 (56.5%) of isolates originating from Uganda and Tanzania respectively all conferring resistance to Beta-lactam-penicillin inhibitors. We observed chloramphenicol resistance-conferring gene mdfA in 21/23 (91.3%) of Tanzanian isolates. Extraintestinal E. coli sequence type (ST) 131 accounted for 5/59 (8.4%) of Tanzanian isolates while enterotoxigenic E. coli ST656 was reported in 9/34 (26.4%) of Ugandan isolates. Virulence factors originating from Shigella dysenteriae Sd197 (gspC, gspD, gspE, gspF, gspG, gspF, gspH, gspI), Yersinia pestis CO92 (irp1, ybtU, ybtX, iucA), Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 (csgF and csgG), and Pseudomonas aeruginosa PAO1 (flhA, fliG, fliM) were identified in these isolates. Overall, this study highlights a concerning prevalence and diversity of AMR-conferring elements shaping the genomic structure of multi-drug resistant E. coli in clinical settings in East Africa. It underscores the urgent need to strengthen infection-prevention controls and advocate for the routine use of WGS in national AMR surveillance and monitoring programs.Availability of WGS analysis pipeline: the rMAP source codes, installation, and implementation manual can free be accessed via https://github.com/GunzIvan28/rMAP .


Assuntos
Escherichia coli Enterotoxigênica , Humanos , Estudos Longitudinais , Virulência , Uganda/epidemiologia , Cloranfenicol , beta-Lactamases/genética
15.
Open Forum Infect Dis ; 10(Suppl 1): S38-S46, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274533

RESUMO

The global response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic demonstrated the value of timely and open sharing of genomic data with standardized metadata to facilitate monitoring of the emergence and spread of new variants. Here, we make the case for the value of Salmonella Typhi (S. Typhi) genomic data and demonstrate the utility of freely available platforms and services that support the generation, analysis, and visualization of S. Typhi genomic data on the African continent and more broadly by introducing the Africa Centres for Disease Control and Prevention's Pathogen Genomics Initiative, SEQAFRICA, Typhi Pathogenwatch, TyphiNET, and the Global Typhoid Genomics Consortium.

16.
Retrovirology ; 20(1): 8, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231494

RESUMO

BACKGROUND: Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups. RESULTS: The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death. CONCLUSION: CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.


Assuntos
Infecções por HIV , HIV-1 , Feminino , Humanos , Uganda , Paciente HIV Positivo não Progressor , HIV-1/fisiologia , Linfócitos T CD4-Positivos , Receptores CCR5/genética , Receptores CCR5/metabolismo
18.
Front Microbiol ; 14: 1120224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180276

RESUMO

Recently, interest in the black soldier fly larvae (BSFL) gut microbiome has received increased attention primarily due to their role in waste bioconversion. However, there is a lack of information on the positive effect on the activities of the gut microbiomes and enzymes (CAZyme families) acting on lignocellulose. In this study, BSFL were subjected to lignocellulose-rich diets: chicken feed (CF), chicken manure (CM), brewers' spent grain (BSG), and water hyacinth (WH). The mRNA libraries were prepared, and RNA-Sequencing was conducted using the PCR-cDNA approach through the MinION sequencing platform. Our results demonstrated that BSFL reared on BSG and WH had the highest abundance of Bacteroides and Dysgonomonas. The presence of GH51 and GH43_16 enzyme families in the gut of BSFL with both α-L-arabinofuranosidases and exo-alpha-L-arabinofuranosidase 2 were common in the BSFL reared on the highly lignocellulosic WH and BSG diets. Gene clusters that encode hemicellulolytic arabinofuranosidases in the CAZy family GH51 were also identified. These findings provide novel insight into the shift of gut microbiomes and the potential role of BSFL in the bioconversion of various highly lignocellulosic diets to fermentable sugars for subsequent value-added products (bioethanol). Further research on the role of these enzymes to improve existing technologies and their biotechnological applications is crucial.

19.
Front Microbiol ; 14: 1148817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089569

RESUMO

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae (NG), compromising gonorrhea treatment, is a global public health concern. Improved, quality-assured NG AMR monitoring at the global level is essential. This mini-review examined NG AMR susceptibility surveillance and AMR data from the African continent from 2001 to 2020. Eligible peer-reviewed publications (n = 30) containing NG AMR data for antimicrobials currently recommended for gonorrhea treatment were included. Overall, very limited NG surveillance and AMR data was available. Furthermore, the NG AMR surveillance studies varied greatly regarding surveillance protocols (e.g., populations and samples tested, sample size, antimicrobials examined), methodologies (e.g., antimicrobial susceptibility testing method [agar dilution, minimum inhibitory concentration (MIC) gradient strip test, disc diffusion test] and interpretative criteria), and quality assurance (internal quality controls, external quality assessments [EQA], and verification of AMR detected). Moreover, most studies examined a suboptimal number of NG isolates, i.e., less than the WHO Global Gonococcal Antimicrobial Surveillance Program (GASP) and WHO Enhanced GASP (EGASP) recommendations of ≥100 isolates per setting and year. The notable inter-study variability and frequently small sample sizes make appropriate inter-study and inter-country comparisons of AMR data difficult. In conclusion, it is imperative to establish an enhanced, standardized and quality-assured NG AMR surveillance, ideally including patient metadata and genome sequencing as in WHO EGASP, in Africa, the region with the highest gonorrhea incidence globally. This will enable the monitoring of AMR trends, detection of emerging AMR, and timely refinements of national and international gonorrhea treatment guidelines. To achieve this aim, national and international leadership, political and financial commitments are imperative.

20.
Immunogenetics ; 75(3): 207-214, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084013

RESUMO

In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Lactente , África , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...