Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 5: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149348

RESUMO

Modular Response Analysis (MRA) is a suite of methods that under certain assumptions permits the precise reconstruction of both the directions and strengths of connections between network modules from network responses to perturbations. Standard MRA assumes that modules are insulated, thereby neglecting the existence of inter-modular protein complexes. Such complexes sequester proteins from different modules and propagate perturbations to the protein abundance of a downstream module retroactively to an upstream module. MRA-based network reconstruction detects retroactive, sequestration-induced connections when an enzyme from one module is substantially sequestered by its substrate that belongs to a different module. Moreover, inferred networks may surprisingly depend on the choice of protein abundances that are experimentally perturbed, and also some inferred connections might be false. Here, we extend MRA by introducing a combined computational and experimental approach, which allows for a computational restoration of modular insulation, unmistakable network reconstruction and discrimination between solely regulatory and sequestration-induced connections for a range of signaling pathways. Although not universal, our approach extends MRA methods to signaling networks with retroactive interactions between modules arising from enzyme sequestration effects.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/fisiologia , Transdução de Sinais/fisiologia , Simulação por Computador , Redes Reguladoras de Genes/genética , Modelos Biológicos , Mapas de Interação de Proteínas/fisiologia , Proteínas , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...