Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 180: 113137, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33690099

RESUMO

A biosensor based on the release of the enzyme substrate from its structure was developed for the inhibitive detection of benzoic acid. A polyurethane support comprising two perforated microcapsules (800 µm in diameter) filled with methylene blue as a model compound and covered with a conductive deposit of multiwalled carbon nanotubes, continuously released this stored dye for 24 h. An increase in methylene blue concentration of 0.5-0.75 µmol L-1 h-1 and 1.5-2 µmol L-1 h-1, in the presence and absence of the multiwalled carbon nanotube coating, respectively, was demonstrated by UV-vis spectroscopy in a 2 mL UV cuvette. The same configuration with microcapsules filled with catechol was modified by a laponite clay coating containing tyrosinase enzyme. The resulting biosensor exhibits a constant cathodic current at -0.155 V vs AgCl/Ag, due to the reduction of the ortho-quinone produced enzymatically from the released catechol. The detection of benzoic acid was recorded from the decrease in cathodic current due to its inhibiting action on the tyrosinase activity. Reagentless biosensors based on different deposited quantity of tyrosinase (100, 200, 400 and 600 µg) were investigated for the detection of catechol and applied to the detection of benzoic acid as inhibitor. The best performance was obtained with the 400 µg-based configuration, namely a detection limit of 0.4 µmol L-1 and a sensitivity of 228 mA L mol-1. After the inhibition process, the biosensors recover 97-100% of their activity towards catechol, confirming a reversible inhibition by benzoic acid.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Ácido Benzoico , Cápsulas , Catecóis , Eletroquímica , Enzimas Imobilizadas , Indicadores e Reagentes , Monofenol Mono-Oxigenase
2.
Artigo em Inglês | MEDLINE | ID: mdl-29994305

RESUMO

Surface acoustic wave sensors find their application in a growing number of fields. This interest stems in particular from their passive nature and the possibility of remote interrogation. Still, the sensor package, due to its size, remains an obstacle for some applications. In this regard, packageless solutions are very promising. This paper describes the potential of the AlN/ZnO/LiNbO3 structure for packageless acoustic wave sensors. This structure, based on the waveguided acoustic wave principle, is studied numerically and experimentally. According to the COMSOL simulations, a wave, whose particle displacement is similar to a Rayleigh wave, is confined within the structure when the AlN film is thick enough. This result is confirmed by comprehensive experimental tests, thus proving the potential of this structure for packageless applications, notably temperature sensing.

3.
Nat Commun ; 8: 14947, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387252

RESUMO

Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, the demonstration of an electron spin transport through a semiconducting MoS2 channel remains challenging. Here we show the evidence of the electrical spin injection and detection in the conduction band of a multilayer MoS2 semiconducting channel using a two-terminal spin-valve configuration geometry. A magnetoresistance around 1% has been observed through a 450 nm long, 6 monolayer thick MoS2 channel with a Co/MgO tunnelling spin injector and detector. It is found that keeping a good balance between the interface resistance and channel resistance is mandatory for the observation of the two-terminal magnetoresistance. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel with an in-plane spin polarization. The long spin diffusion length (approximately ∼235 nm) could open a new avenue for spintronic applications using multilayer transition metal dichalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...