Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Ecol ; 56(4): 1315-1321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330038

RESUMO

In zooplankton surveys, many smaller taxa or species considered less important are often overlooked. One such example is the actinotrocha larvae of phoronid worms that are rarely quantified in zooplankton samples yet may play important roles in marine food webs. To gain a better understanding of phoronid ecology in coastal waters, we retrospectively analysed 145 plankton samples collected from two coastal sites in Ireland (Lough Hyne and Bantry Bay). Samples were collected using plankton nets from depths of 20 and 40 m. Phoronids were present in 37.7% and 38.2% of samples, with mean abundances of 0.3 ± 0.5 ind. m-3 and 1.2 ± 2.8 ind. m-3, respectively, and were identified as Phoronis muelleri and Phoronis hippocrepia. Phoronids were present consistently each year from April to October at Lough Hyne and from February to October at Bantry Bay. Comparisons with other taxa in Lough Hyne show that abundances are similar to those of fish larvae (1.1 ± 1.8 ind. m-3) and echinoderm larvae (2.3 ± 4.4 ind. m-3). Examination of these samples from Irish waters suggests that phoronids are more abundant in temperate waters than previously reported. Supplementary Information: The online version contains supplementary material available at 10.1007/s10452-022-09982-6.

2.
Mar Pollut Bull ; 177: 113496, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35272109

RESUMO

Global shipping facilitates the introduction of invasive species and parasites via ballast water and hull fouling. Regional management of invasives may be strengthened by identifying the major routes in a network, to allow for targeted ship inspections. This study used cargo shipping records to establish the connectivity of shipping routes between ports in Ireland and other nations. 9291 records were analysed, investigating vessel residence and journey times. On average, vessels spent up to five days in port and less than five days at sea. However, there was strong variation, with general cargo ships recording up to 13 days in port. A horizon scan for species likely to invade in Ireland was incorporated for five species and their associated parasites: American razor clam, Asian shore crab, Brush clawed shore crab, Chinese mitten crab and American slipper limpet. Routes of concern are highlighted and a general framework for effective management is outlined.


Assuntos
Espécies Introduzidas , Navios , Irlanda , Água
3.
Glob Chang Biol ; 28(6): 1972-1989, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854178

RESUMO

Ocean deoxygenation is one of the major consequences of climate change. In coastal waters, this process can be exacerbated by eutrophication, which is contributing to an alarming increase in the so-called 'dead zones' globally. Despite its severity, the effect of reduced dissolved oxygen has only been studied for a very limited number of organisms, compared to other climate change impacts such as ocean acidification and warming. Here, we experimentally assessed the response of sponges to moderate and severe simulated hypoxic events. We ran three laboratory experiments on four species from two different temperate oceans (NE Atlantic and SW Pacific). Sponges were exposed to a total of five hypoxic treatments, with increasing severity (3.3, 1.6, 0.5, 0.4 and 0.13 mg O2  L-1 , over 7-12-days). We found that sponges are generally very tolerant of hypoxia. All the sponges survived in the experimental conditions, except Polymastia crocea, which showed significant mortality at the lowest oxygen concentration (0.13 mg O2  L-1 , lethal median time: 286 h). In all species except Suberites carnosus, hypoxic conditions do not significantly affect respiration rate down to 0.4 mg O2  L-1 , showing that sponges can uptake oxygen at very low concentrations in the surrounding environment. Importantly, sponges displayed species-specific phenotypic modifications in response to the hypoxic treatments, including physiological, morphological and behavioural changes. This phenotypic plasticity likely represents an adaptive strategy to live in reduced or low oxygen water. Our results also show that a single sponge species (i.e., Suberites australiensis) can display different strategies at different oxygen concentrations. Compared to other sessile organisms, sponges generally showed higher tolerance to hypoxia, suggesting that sponges could be favoured and survive in future deoxygenated oceans.


Assuntos
Mudança Climática , Água do Mar , Eutrofização , Concentração de Íons de Hidrogênio , Oceanos e Mares
4.
Sci Total Environ ; 789: 147708, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34323821

RESUMO

Temperate Mesophotic Ecosystems (TMEs) are stable habitats, usually dominated by slow-growing, long-lived sessile invertebrates and sciaphilous algae. Organisms inhabiting TMEs can form complex three-dimensional structures and support many commercially important species. However, TMEs have been poorly studied, with little known about their vulnerability to environmental impacts. Lough Hyne Marine Nature Reserve (Ireland) supports TMEs in shallower waters (12-40 m) compared with other locations (30-150+ m) as a result of the unusual hydrodynamic conditions. Here, we report changes that have occurred on the sponge-dominated cliffs at Lough Hyne between 1990 and 2019, providing insights into TME long-term stability and vulnerability to environmental impacts. Our main finding was a marked decline in most three-dimensional sponges at the internal sites of the lough. This was likely the result of one or more mass mortality events that occurred between 2010 and 2015. We also found an increase in ascidians, which might have been more tolerant and benefited from the space freed by the sponge mortality. Finally, in the most recent surveys, we found a high abundance of sponge recruits, indicating that a natural recovery may be underway. The possible factors involved in these community changes include eutrophication, increased temperature, and a toxic event due to an anomaly in the oxycline breakdown. However, the absence of comprehensive monitoring of biotic and abiotic variables makes it impossible to identify the cause with certainty. Our Lough Hyne example shows the potential vulnerability of TMEs to short-term disturbance events, highlighting the importance of monitoring these habitats globally to ensure they are appropriately conserved.

5.
mSphere ; 6(1)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536324

RESUMO

Climate change is expanding marine oxygen minimum zones (OMZs), while anthropogenic nutrient input depletes oxygen concentrations locally. The effects of deoxygenation on animals are generally detrimental; however, some sponges (Porifera) exhibit hypoxic and anoxic tolerance through currently unknown mechanisms. Sponges harbor highly specific microbiomes, which can include microbes with anaerobic capabilities. Sponge-microbe symbioses must also have persisted through multiple anoxic/hypoxic periods throughout Earth's history. Since sponges lack key components of the hypoxia-inducible factor (HIF) pathway responsible for hypoxic responses in other animals, it was hypothesized that sponge tolerance to deoxygenation may be facilitated by its microbiome. To test this hypothesis, we determined the microbial composition of sponge species tolerating seasonal anoxia and hypoxia in situ in a semienclosed marine lake, using 16S rRNA amplicon sequencing. We discovered a high degree of cryptic diversity among sponge species tolerating seasonal deoxygenation, including at least nine encrusting species of the orders Axinellida and Poecilosclerida. Despite significant changes in microbial community structure in the water, sponge microbiomes were species specific and remarkably stable under varied oxygen conditions, which was further explored for Eurypon spp. 2 and Hymeraphia stellifera However, some symbiont sharing occurred under anoxia. At least three symbiont combinations, all including large populations of Thaumarchaeota, corresponded with deoxygenation tolerance, and some combinations were shared between some distantly related hosts. We propose hypothetical host-symbiont interactions following deoxygenation that could confer deoxygenation tolerance.IMPORTANCE The oceans have an uncertain future due to anthropogenic stressors and an uncertain past that is becoming clearer with advances in biogeochemistry. Both past and future oceans were, or will be, deoxygenated in comparison to present conditions. Studying how sponges and their associated microbes tolerate deoxygenation provides insights into future marine ecosystems. Moreover, sponges form the earliest branch of the animal evolutionary tree, and they likely resemble some of the first animals. We determined the effects of variable environmental oxygen concentrations on the microbial communities of several demosponge species during seasonal anoxia in the field. Our results indicate that anoxic tolerance in some sponges may depend on their symbionts, but anoxic tolerance was not universal in sponges. Therefore, some sponge species could likely outcompete benthic organisms like corals in future, reduced-oxygen ecosystems. Our results support the molecular evidence that sponges and other animals have a Neoproterozoic origin and that animal evolution was not limited by low-oxygen conditions.


Assuntos
Bactérias/genética , Lagos/microbiologia , Microbiota/genética , Microbiota/fisiologia , Poríferos/microbiologia , Estações do Ano , Anaerobiose , Animais , Organismos Aquáticos , Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Mudança Climática , Variação Genética , Interações entre Hospedeiro e Microrganismos , Irlanda , Filogenia , Poríferos/classificação , Poríferos/genética , Poríferos/fisiologia
6.
Limnol Oceanogr ; 64(4): 1802-1818, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31588149

RESUMO

Understanding how gelatinous zooplankton communities are structured by local hydrography and physical forcing has important implications for fisheries and higher trophic predators. Although a large body of research has described how fronts, hydrographic boundaries, and different water masses (e.g., mixed vs. stratified) influence phytoplankton and zooplankton communities, comparatively few studies have investigated their influence on gelatinous zooplankton communities. In July 2015, 49 plankton samples were collected from 50 m depth to the surface, across five transects in the Celtic Sea, of which, four crossed the Celtic Sea Front. Two distinct gelatinous communities were found in this dynamic shelf sea: a cold water community in the cooler mixed water that mainly contained neritic taxa and a warm water community in the warmer stratified water that contained a mixture of neritic and oceanic taxa. The gelatinous biomass was 40% greater in the warm water community (∼ 2 mg C m-3) compared with the cold water community (∼ 1.3 mg C m-3). The warm water community was dominated by Aglantha digitale, Lizzia blondina, and Nanomia bijuga, whereas the cold water community was dominated by Clytia hemisphaerica and ctenophores. Physonect siphonophores contributed > 36% to the gelatinous biomass in the warm water community, and their widespread distribution suggests they are ecologically more important than previously thought. A distinct oceanic influence was also recorded in the wider warm water zooplankton community, accounting for a ∼ 20 mg C m-3 increase in biomass in that region.

7.
J Mol Biol ; 431(22): 4381-4407, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442478

RESUMO

Selenoproteins typically contain a single selenocysteine, the 21st amino acid, encoded by a context-redefined UGA. However, human selenoprotein P (SelenoP) has a redox-functioning selenocysteine in its N-terminal domain and nine selenium transporter-functioning selenocysteines in its C-terminal domain. Here we show that diverse SelenoP genes are present across metazoa with highly variable numbers of Sec-UGAs, ranging from a single UGA in certain insects, to 9 in common spider, and up to 132 in bivalve molluscs. SelenoP genes were shaped by a dynamic evolutionary process linked to selenium usage. Gene evolution featured modular expansions of an ancestral multi-Sec domain, which led to particularly Sec-rich SelenoP proteins in many aquatic organisms. We focused on molluscs, and chose Pacific oyster Magallana gigas as experimental model. We show that oyster SelenoP mRNA with 46 UGAs is translated full-length in vivo. Ribosome profiling indicates that selenocysteine specification occurs with ∼5% efficiency at UGA1 and approaches 100% efficiency at distal 3' UGAs. We report genetic elements relevant to its expression, including a leader open reading frame and an RNA structure overlapping the initiation codon that modulates ribosome progression in a selenium-dependent manner. Unlike their mammalian counterparts, the two SECIS elements in oyster SelenoP (3'UTR recoding elements) do not show functional differentiation in vitro. Oysters can increase their tissue selenium level up to 50-fold upon supplementation, which also results in extensive changes in selenoprotein expression.


Assuntos
Códon de Terminação/genética , Moluscos/química , Moluscos/genética , Selenoproteína P/química , Selenoproteína P/genética , Animais , Evolução Biológica , Biossíntese de Proteínas , Selenocisteína/química , Selenocisteína/genética
8.
PLoS One ; 6(4): e18529, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490977

RESUMO

BACKGROUND: Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered. CONCLUSIONS: Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future.


Assuntos
Brânquias/lesões , Salmo salar/lesões , Cifozoários , Animais , Aquicultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...