Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 10(1): coac003, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35035978

RESUMO

[This corrects the article DOI: 10.1093/conphys/coab088.].

2.
Conserv Physiol ; 9(1): coab088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925845

RESUMO

Skin is a key aspect of the immune system in the defence against pathogens. Skin pH regulates the activity of enzymes produced both by hosts and by microbes on host skin, thus implicating pH in disease susceptibility. Skin pH varies inter- and intra-specifically and is influenced by a variety of intrinsic and extrinsic variables. Increased skin alkalinity is associated with a predisposition to cutaneous infections in humans and dogs, and inter-specific and inter-individual variation in skin pH is implicated in differential susceptibility to some skin diseases. The cutaneous pH of bats has not been characterized but is postulated to play a role in susceptibility to white-nose syndrome (WNS), a fungal infection that has decimated several Nearctic bat species. We used non-invasive probes to measure the pH of bat flight membranes in five species with differing susceptibility to WNS. Skin pH ranged from 4.67 to 8.59 and varied among bat species, geographic locations, body parts, age classes, sexes and seasons. Wild Eptesicus fuscus were consistently more acidic than wild Myotis lucifugus, Myotis leibii and Perimyotis subflavus. Juvenile bats had more acidic skin than adults during maternity season but did not differ during swarming. Male M. lucifugus were more acidic than females during maternity season, yet this trend reversed during swarming. Bat skin was more acidic in summer compared to winter, a pattern also reported in humans. Skin pH was more acidic in captive than wild E. fuscus, suggesting environmental impacts on skin pH. The pH of roosting substrates affects skin pH in captive bats and may partially explain seasonal patterns in wild bats that use different roost types across seasons. Future research on the influence of pH on microbial pathogenic factors and skin barrier function may provide valuable insights on new therapeutic targets for treating bat skin conditions.

3.
Ecol Evol ; 11(5): 2273-2288, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717454

RESUMO

We document white-nose syndrome (WNS), a lethal disease of bats caused by the fungus Pseudogymnoascus destructans (Pd), and hibernacula microclimate in New Brunswick, Canada. Our study area represents a more northern region than is common for hibernacula microclimate investigations, providing insight as to how WNS may impact bats at higher latitudes. To determine the impact of the March 2011 arrival of Pd in New Brunswick and the role of hibernacula microclimate on overwintering bat mortality, we surveyed bat numbers at hibernacula twice a year from 2009 to 2015. We also collected data from iButton temperature loggers deployed at all sites and data from HOBO temperature and humidity loggers at three sites. Bat species found in New Brunswick hibernacula include Myotis lucifugus (Little Brown Bat) and M. septentrionalis (Northern Long-eared Bat), with small numbers of Perimyotis subflavus (Tricolored Bat). All known hibernacula in the province were Pd-positive with WNS-positive bats by winter 2013. A 99% decrease in the overwintering bat population in New Brunswick was observed between 2011 and 2015. We did not observe P. subflavus during surveys 2013-2015 and the species appears to be extirpated from these sites. Bats did not appear to choose hibernacula based on winter temperatures, but dark zone (zone where no light penetrates) winter temperatures did not differ among our study sites. Winter dark zone temperatures were warmer and less variable than entrance or above ground temperatures. We observed visible Pd growth on hibernating bats in New Brunswick during early winter surveys (November), even though hibernacula temperatures were colder than optimum for in vitro Pd growth. This suggests that cold hibernacula temperatures encountered near the apparent northern range limit for Pd do not sufficiently slow fungal growth to prevent the onset of WNS and associated bat mortality over the winter.

4.
Zootaxa ; 4455(2): 389-394, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30314216

RESUMO

The millipede Craspedosoma raulinsii (Craspedosomatidae) is widespread in Central Europe from Belarus and southern Scandinavia west to Britain and Ireland. Although the species is often not common and rarely encountered (Blower 1985, Hoffman 1999, Lee 2006), Kime (2004) reports C. raulinsii as the third most widespread millipede in Belgium. Shelley (1990) reported C. raulinsii (as C. rawlinsii) for the first time from North America (from Gatineau Park, Quebec, Canada) and noted the occurrence is the first introduction of a representative of the order Chordeumatida in the New World. Here we report new records that suggest widespread occurrence of this introduced millipede in eastern Canada and comment on the commonly-applied spelling of the specific epithet of the species. Vouchers have been deposited in the collections of the New Brunswick Museum (NBM).


Assuntos
Invertebrados , Animais , Bélgica , Canadá , Europa (Continente) , Irlanda , América do Norte , República de Belarus , Países Escandinavos e Nórdicos
5.
J Wildl Dis ; 52(4): 902-906, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458830

RESUMO

Big brown bats ( Eptesicus fuscus ) overwintering outside the underground environment are not believed to play a role in the epidemiology of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd). Using quantitative real-time PCR (qPCR), we provide molecular evidence for Pd on four big brown bats overwintering in heated buildings in New Brunswick, Canada. Two of the affected individuals also had very mild, focal, pustular, fungal dermatitis identified microscopically. A third bat, which was qPCR Pd-negative, had similar fungal lesions. Despite determining that these fungal lesions were caused by a suspected ascomycete, the intralesional fungi were not confirmed to be Pd. These findings demonstrate that bats overwintering in heated buildings and other above-ground sites may have subclinical or preclinical WNS, or be contaminated with Pd, and could play a role in local dispersal of Pd. Our inability to determine if the ascomycetes causing pustular lesions were Pd highlights the need for ancillary diagnostic tests, such as in situ hybridization or immunohistochemistry, so that Pd can be detected directly within a lesion. As the host-pathogen relationship for Pd evolves, and where bat species are exposed to the fungus under varying temperature regimes, lesions may become less stereotypic and such tests could help define these changes.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/microbiologia , Dermatite/veterinária , Animais , Ascomicetos/isolamento & purificação , Canadá , Novo Brunswick
6.
Insects ; 7(2)2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110827

RESUMO

The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve.

7.
PLoS One ; 9(8): e104684, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122221

RESUMO

Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.


Assuntos
Fungos/genética , Variação Genética/genética , Animais , Canadá , Quirópteros/microbiologia , DNA Fúngico/genética , Genótipo , Micoses/microbiologia , América do Norte , Nariz/microbiologia , Fenótipo , Síndrome
8.
Conserv Biol ; 27(1): 121-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23025354

RESUMO

United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality-driven conservation issues.


Assuntos
Conservação dos Recursos Naturais/métodos , Baleias/fisiologia , Animais , Canadá , Conservação dos Recursos Naturais/legislação & jurisprudência , Atividades Humanas , Humanos , Dinâmica Populacional , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...