Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 758: 143646, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257069

RESUMO

Understanding the factors that control As concentrations in groundwater is vital for supplying safe groundwater in regions with As-polluted aquifers. Despite much research, mainly addressing Holocene aquifers hosting young (<100 yrs) groundwater, the source, transport, and fate of As in Pleistocene aquifers with fossil (>12,000 yrs) groundwaters are not yet fully understood and so are assessed here through an evaluation of the redox properties of the system in a type locality, the Po Plain (Italy). Analyses of redox-sensitive species and major ions on 22 groundwater samples from the Pleistocene arsenic-affected aquifer in the Po Plain shows that groundwater concentrations of As are controlled by the simultaneous operation of several terminal electron accepters. Organic matter, present as peat, is abundant in the aquifer, allowing groundwater to reach a quasi-steady-state of highly reducing conditions close to thermodynamic equilibrium. In this system, simultaneous reduction of Fe-oxide and sulfate results in low concentrations of As (median 7 µg/L) whereas As reaches higher concentrations (median of 82 µg/L) during simultaneous methanogenesis and Fe-reduction. The position of well-screens is an additional controlling factor on groundwater As: short screens that overlap confining aquitards generate higher As concentrations than long screens placed away from them. A conceptual model for groundwater As, applicable worldwide in other Pleistocene aquifers with reducible Fe-oxides and abundant organic matter is proposed: As may have two concentration peaks, the first after prolonged Fe-oxide reduction and until sulfate reduction takes place, the second during simultaneous Fe-reduction and methanogenesis.

2.
Sci Total Environ ; 672: 342-356, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959301

RESUMO

For several hundred years, farming in the Po Plain of Italy (46,000 km2, 20 million inhabitants) has been supported by intensive surface irrigation with lake and river water. Despite the longevity of irrigation, its effects on the quality and quantity of groundwater is poorly known and so is investigated here through seasonal measurements of hydraulic heads and water quality in groundwaters, rivers, lake, springs and rainwaters. In the north of the study region, an unconfined coarse-grained alluvial aquifer, infiltration of surface irrigation water, sourced from the Oglio River and low in NO3, contributes much to aquifer recharge (up to 88%, as evidenced by a δ2H-Cl/Br mixing model) and has positive effects on groundwater quality by diluting high concentrations of NO3 (decrease by 17% between June and September). This recharge also helps to maintain numerous local springs that form important local micro-environments. Any increase in water-use efficiency in irrigation will reduce this recharge, imperil the spring environments, and lessen the dilution of NO3 leading to increasing NO3 concentrations in groundwater. These findings can be extended by analogy to the entire Po Plain region and other surface-water-irrigated systems worldwide where inefficient irrigation methods are used and similar hydrogeological features occur.

3.
Environ Sci Technol ; 49(7): 4193-9, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25734617

RESUMO

Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal. The bacterium, here designated WB3, respires soluble arsenate and couples its reduction to the oxidation of acetate; WB3 is therefore implicated in the process of arsenic pollution of groundwater, which is largely by arsenite. The bacterium WB3 is also capable of reducing dissolved Fe(III) citrate, solid Fe(III)-oxyhydroxide, and elemental sulfur, using acetate as the electron donor. It is a member of the Desulfuromonas genus and possesses a dissimilatory arsenate reductase that was identified using degenerate polymerase chain reaction primers. The sediment from which WB3 was isolated was brown, Pleistocene sand at a depth of 35.2 m below ground level (mbgl). This level was some 3 cm below the boundary between the brown sands and overlying reduced, gray, Holocene aquifer sands. The color boundary is interpreted to be a reduction front that releases As for resorption downflow, yielding a high load of labile As sorbed to the sediment at a depth of 35.8 mbgl and concentrations of As in groundwater that reach >1000 µg/L.


Assuntos
Arseniatos/química , Arsênio/análise , Desulfuromonas/isolamento & purificação , Monitoramento Ambiental/métodos , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise , Arsênio/química , Ásia Ocidental , Desulfuromonas/crescimento & desenvolvimento , Compostos Férricos/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Oxirredução , Poluentes Químicos da Água/química
4.
Talanta ; 85(3): 1404-11, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807202

RESUMO

Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours.


Assuntos
Arsênio/análise , Técnicas Eletroquímicas/métodos , Ferro/análise , Manganês/análise , Poluentes Químicos da Água/análise , Arsênio/química , Cromatografia Líquida de Alta Pressão , Ácido Edético/farmacologia , Monitoramento Ambiental/métodos , Índia , Ferro/química , Manganês/química , Espectrometria de Massas/métodos , Oxirredução/efeitos dos fármacos
5.
Environ Sci Technol ; 45(4): 1376-83, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21268629

RESUMO

The consumption of groundwater polluted by arsenic (As) has a severe and adverse effect on human health, particularly where, as happens in parts of SE Asia, groundwater is supplied largely from fluvial/deltaic aquifers. The lateral distribution of the As-pollution in such aquifers is heterogeneous. The cause of the heterogeneity is obscure. The location and severity of the As-pollution is therefore difficult to predict, despite the importance of such predictions to the protection of consumer health, aquifer remediation, and aquifer development. To explain the heterogeneity, we mapped As-pollution in groundwater using 659 wells across 102 km(2) of West Bengal, and logged 43 boreholes, to reveal that the distribution of As-pollution is governed by subsurface sedimentology. Across 47 km(2) of contiguous palaeo-interfluve, we found that the shallow aquifer (<70 mbgl) is unpolluted by As (<10 µg/L) because it is capped by an impermeable palaeosol of red clay (the last glacial maximum palaeosol, or LGMP, of ref 1 ) at depths between 16 and 24 mbgl. The LGMP protects the aquifer from vertical recharge that might carry As-rich water or dissolved organic matter that might drive reduction of sedimentary iron oxides and so release As to groundwater. In 55 km(2) of flanking palaeo-channels, the palaeosol is absent, so invasion of the aquifer by As and dissolved organic matter can occur, so palaeo-channel groundwater is mostly polluted by As (>50 µg/L). The role of palaeosols and, in particular, the LGMP, has been overlooked as a control on groundwater flow and pollutant movement in deltaic and coastal aquifers worldwide. Models of pollutant infiltration in such environments must include the appreciation that, where the LGMP (or other palaeosols) are present, recharge moves downward in palaeo-channel regions that are separated by palaeo-interfluvial regions where vertical recharge to underlying aquifers cannot occur and where horizontal flow occurs above the LGMP and any aquifer it caps.


Assuntos
Arsênio/análise , Água Subterrânea/química , Poluentes da Água/análise , Ásia , Sedimentos Geológicos/química , Modelos Teóricos , Compostos Orgânicos , Oxirredução , Movimentos da Água
6.
Nature ; 441(7093): E5; discussion E5-6, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16738612

RESUMO

Dramatic global warming, triggered by release of methane from clathrates, has been postulated to have occurred during the early Toarcian age in the Early Jurassic period. Kemp et al. claim that this methane was released at three points, as recorded by three sharp excursions of delta13C(org) of up to 3 per thousand magnitude. But they discount another explanation for the excursions: namely that some, perhaps all, of the rapid excursions could be a local signature of a euxinic basin caused by recycling of isotopically light carbon from the lower water column. This idea has been proposed previously (see ref. 3, for example) and is supported by the lack evidence for negative delta13C excursions in coeval belemnite rostra. Kemp et al. dismiss this alternative, claiming that each abrupt shift would have required the recycling of about double the amount of organic carbon that is currently present in the modern ocean; however, their measurements are not from an ocean but from a restricted, epicontinental seaway and so would not require whole-ocean mixing to achieve the excursions.


Assuntos
Metano/metabolismo , Água do Mar/química , Animais , Biodiversidade , Carbono/metabolismo , Isótopos de Carbono , Dinoflagellida/metabolismo , Efeito Estufa , História Antiga , Biologia Marinha , Oceanografia , Oceanos e Mares , Oxigênio/análise , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...