Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2(34): 5558-5568, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262189

RESUMO

Tissue engineered materials aimed at wound care typically underperform due to poor engrafting to the wound bed. The need for such materials will continue to intensify as a result of an ageing population and an increase in patients suffering from vascular problems. Here we describe the development of an angiogenic coating strategy employing a combination of plasma phase deposition of acrylic acid and layer-by-layer (LBL) chemistry using polyethyleneimine and poly(acrylic acid) for the immobilization of heparin and Vascular Endothelial Growth Factor (VEGF). The formation of the coating and its ability to immobilize heparin was examined by Quartz Crystal Microbalance with Dissipation. X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy were used to confirm that these coatings retained a significant amount of heparin on the surface when applied to a flat substrate. The coating strategy was transferred to 2 different tissue scaffold architectures: a commercially available non-biodegradable polypropylene mesh, and a biodegradable electrospun poly(lactic-co-glycolic acid) (PLGA) scaffold. XPS confirmed that the coating was successfully applied to the scaffolds and that a similar amount of heparin was immobilized. In vitro testing showed that while HDMEC readily attached to the PLGA scaffold, they were inhibited from adhering and forming proliferative colonies where heparin alone was attached to the LBL coated PLGA scaffold. However, after dip coating with VEGF, the heparin coated scaffold supported both attachment and colony growth of HDMEC; no such colony formation occurred in the absence of VEGF.

2.
Biofouling ; 29(8): 939-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23906317

RESUMO

Metallurgical features have been shown to play an important role in the attachment of microorganisms to metal surfaces. In the present study, the influence of the microstructure of as-received (AR) and heat-treated (HT) 1010 carbon steel on the initial attachment of bacteria was investigated. Heat treatment was carried out with the aim of increasing the grain size of the carbon steel coupons. Mirror-polished carbon steel coupons were immersed in a minimal medium inoculated with Escherichia coli (ATCC 25922) to investigate the early (15, 30 and 60 min) and relatively longer-term (4 h) stages of bacterial attachment. The results showed preferential colonisation of bacteria on the grain boundaries of the steel coupons. The bacterial attachment to AR steel coupons was relatively uniform compared to the HT steel coupons where an increased number of localised aggregates of bacteria were found. Quantitative analysis showed that the ratio of the total number of isolated (i.e., single) bacteria to the number of bacteria in aggregates was significantly higher on the AR coupons than the HT coupons. Longer-term immersion studies showed production of extracellular polymeric substances by the bacteria and corrosion at the grain boundaries on both types of steel coupon tested.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbono/química , Escherichia coli/fisiologia , Aço/química , Corrosão , Escherichia coli/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Propriedades de Superfície
3.
J Microsc ; 250(3): 179-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23521067

RESUMO

Thermally sensitive fluorescent indicators have been proposed to monitor temperature changes in microfluidic systems, mainly based on fluorescence intensity or lifetime. However, measuring temperature in a structured environment, such as biological tissue, presents additional challenges due to the chemical and structural complexity. Here, we investigate the potential for resolving temperature distributions within the volume of a single cell. Rhodamine B (RhB) dye was employed as a temperature indicator to compare fluorescence intensity- and lifetime-based techniques. The relationship between the fluorescence lifetime and temperature was found to be highly dependent on the biological environment. The intensity-based method allowed the temperature distribution to be mapped with partial success within the volume of a single cell. Under ideal circumstances, the temperature can be mapped pixel by pixel with a resolution better than ±0.3°C within the cell cytoplasm, but this accuracy was reduced to ±1.8°C by environmental variations. These results suggest that the fluorophore should be encapsulated and immobilized in the biological tissue in order to reduce the influence of environmental factors on temperature measurements at the cellular level.


Assuntos
Fenômenos Fisiológicos Celulares , Técnicas Citológicas/métodos , Corantes Fluorescentes/metabolismo , Fluorometria/métodos , Coloração e Rotulagem/métodos , Fenômenos Químicos , Fluorescência , Processamento de Imagem Assistida por Computador/métodos , Temperatura
4.
Biomicrofluidics ; 6(3): 36504, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24062864

RESUMO

Polydimethylsiloxane (DMS) is a popular material for microfluidics, but it is hydrophobic and is prone to non-specific protein adsorption. In this study, we explore methods for producing stable, protein resistant, tetraglyme plasma polymer coatings on PDMS by combining extended baking processes with multiple plasma polymer coating steps. We demonstrate that by using this approach, it is possible to produce a plasma polymer coatings that resist protein adsorption (<10 ng/cm(2)) and are stable to storage over at least 100 days. This methodology can translate to any plasma polymer system, enabling the introduction of a wide range of surface functionalities on PDMS surfaces.

5.
Biomaterials ; 25(20): 4861-75, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15109847

RESUMO

Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new surface analysis method with unique capabilities that complement established biomaterial surface analysis methods such as XPS and ToF-SSIMS. These new MALDI variant methods, which we shall collectively summarize as Surface-MALDI-MS, are capable of desorbing adsorbed macromolecules from biomaterial surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established biochemical techniques such as SDS-PAGE, and can in some circumstances be used for the quantitative analysis of adsorbed protein amounts. At this early stage of development, however, limitations exist: in some cases proteins are not detectable, which appears to be related to tight surface binding. This review summarizes ways in which Surface-MALDI-MS methods have been applied to the study of a range of issues in biomaterials surfaces research.


Assuntos
Materiais Biocompatíveis/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adsorção , Animais , Biofilmes , Eletroforese em Gel de Poliacrilamida , Humanos , Íons , Proteômica/métodos
6.
Biomaterials ; 22(24): 3295-304, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11700801

RESUMO

XPS and MALDI-MS were used to analyse initial adsorption events in the fouling of HEMA-based contact lenses. All of the lenses tested accumulated tear film deposits within 10 min of wear. XPS indicated the presence of mainly proteinaceous deposits, with indications of some contributions by mucins or lipids on some lenses and the nature of the deposit being influenced by the lens chemistry. MALDI-MS detected the presence of surface-adsorbed species with molecular weights < 15 kDa. While lysozyme could be identified by comparison of MALDI-MS signals with known protein mass and assignments are suggested for some other signals, several other species, with MWs less than that of lysozyme, could not be identified as no ocular proteins with corresponding MWs had been reported in previous biochemical tear film analyses. These species, and others, were also detected in MALDI-MS analysis of reflex tear film, suggesting that the adsorbed unidentified species were not simply products of surface-induced dissociation of adsorbing higher-MW proteins. This short-term wear study detected rapid interface conversion and demonstrated the utility and surface sensitivity of XPS and MALDI-MS in characterising contact lens deposits at the initial stages when sub-monolayer adsorbed amounts are present on lenses.


Assuntos
Materiais Biocompatíveis/química , Lentes de Contato Hidrofílicas , Metacrilatos/química , Poli-Hidroxietil Metacrilato/análogos & derivados , Adsorção , Humanos , Hidrogéis , Teste de Materiais , Poli-Hidroxietil Metacrilato/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria por Raios X , Propriedades de Superfície , Lágrimas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...