Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 8: 16, 2008 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-18279528

RESUMO

BACKGROUND: Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. RESULTS: Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. CONCLUSION: Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Malus/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Amido/metabolismo , Fatores de Tempo
2.
Plant Physiol ; 141(1): 147-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16531485

RESUMO

The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5'-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop.


Assuntos
Etiquetas de Sequências Expressas , Malus/genética , Arabidopsis/genética , Sequência de Bases , Análise por Conglomerados , Evolução Molecular , Biblioteca Gênica , Genômica , Malus/crescimento & desenvolvimento , Malus/metabolismo , Repetições Minissatélites , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Transdução de Sinais , Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...