Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382659

RESUMO

Omics-based measurements enable the study of biomolecules in a high-throughput fashion, leading to the characterization and quantification of biological systems. Multi-omics methods aim to incorporate several omics measurements for a more holistic approach, which is crucial for advancing our understanding of the diversity and redundancy of biological systems. Current multi-omics sample preparation methods have achieved proteomics, lipidomics, and metabolomics from individual samples; however, the bioinformatic tools currently available for interpreting data generated from these omics are limited. Alternately, transcriptomics has a wide arsenal of available bioinformatic tools offering intensive sample characterization but has yet to be incorporated into a unified, multi-omics sample preparation technique. Herein we describe the modified bead-enabled accelerated monophasic multi-omics (mBAMM) method, which incorporates RNA extraction for transcriptomics analysis. mBAMM was shown to enable RNA-seq without compromising the isolation of biomolecules for proteomics, lipidomics, and metabolomics. This methodology greatly improves sample characterization and represents a major innovation toward cohesive insights into biological systems.

2.
Toxicol Sci ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110521

RESUMO

While classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of sub-cytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type. For these reasons, toxicological researchers need new approaches to determine metabolic changes across various doses in differing cell types, especially within the low-dose regime. The data collected herein demonstrate that LC-MS/MS-based untargeted metabolomics with a feature-agnostic view of the data, combined with a suite of statistical methods including an adapted environmental threshold analysis, provides a versatile, robust, and holistic approach to directly monitoring the overall cellular metabolomic response to pesticides. When employing this method in investigating two different cell types, human cardiomyocytes and neurons, this approach revealed separate sub-cytotoxic metabolomic responses at doses of 0.1 µM and 1 µM of chlorpyrifos and carbaryl. These findings suggest that this agnostic approach to untargeted metabolomics can provide a new tool for determining effective dose by metabolomics (EDm) of chemical challenges, such as pesticides, in a direct measurement of metabolomic response that is not cell type-specific or observable using traditional assays.

3.
Neuron ; 112(17): 2869-2885.e8, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38996587

RESUMO

To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. Although new technologies, such as Neuropixels probes, facilitate multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe skull-shaped hemispheric implants enabling large-scale electrophysiology datasets (SHIELD). These 3D-printed skull-replacement implants feature customizable insertion holes, allowing dozens of cortical and subcortical structures to be recorded in a single mouse using repeated multi-probe insertions over many days. We demonstrate the procedure's high success rate, biocompatibility, lack of adverse effects on behavior, and compatibility with imaging and optogenetics. To showcase SHIELD's scientific utility, we use multi-probe recordings to reveal novel insights into how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this method enables powerful, large-scale electrophysiological experiments for the study of distributed neural computation.


Assuntos
Encéfalo , Crânio , Animais , Camundongos , Encéfalo/fisiologia , Crânio/cirurgia , Optogenética/métodos , Fenômenos Eletrofisiológicos/fisiologia , Impressão Tridimensional , Potenciais de Ação/fisiologia , Eletrodos Implantados , Camundongos Endogâmicos C57BL , Masculino , Eletrofisiologia/métodos
4.
Analyst ; 149(13): 3564-3574, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38717518

RESUMO

Field-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest. Notwithstanding these technological advancements, low-cost, portable systems still struggle to confidently identify clinically significant organisms of interest, such as bacteria, viruses, and proteinaceous toxins, due to the limitations in resolving power. To overcome these limitations, we developed a novel multidimensional mass fingerprinting technique that uses tandem mass spectrometry to increase the chemical specificity for low-resolution mass spectral profiles. We demonstrated the method's capabilities for differentiating four different bacteria, including attentuated strains of Yersinia pestis. This approach allowed for the accurate (>92%) identification of each organism at the strain level using de-resolved matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) data to mimic the performance characteristics of miniaturized mass spectrometers. This work demonstrates that low-resolution mass spectrometers, equipped with tandem MS acquisition modes, can accurately identify clinically relevant bacteria. These findings support the future application of these technologies for field-forward and point-of-care applications where high-performance mass spectrometers would be cost-prohibitive or otherwise impractical.


Assuntos
Espectrometria de Massas em Tandem , Yersinia pestis , Yersinia pestis/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Bactérias/isolamento & purificação
5.
J Breath Res ; 18(2)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198707

RESUMO

The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (p< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.


Assuntos
Testes Respiratórios , Espectrometria de Massas por Ionização por Electrospray , Humanos , Masculino , Feminino , Adulto , Espectrometria de Massas por Ionização por Electrospray/métodos , Testes Respiratórios/métodos , Expiração , Biologia Computacional
6.
Front Plant Sci ; 14: 1274094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023868

RESUMO

Twenty-eight cranberry farms in southwestern British Columbia were investigated for the prevalence and spatial distribution of fungal pathogens that contribute to fruit rot incidence. Farms were selected from six regions where most cranberry production is concentrated. Flowers, and green and ripe fruit (var. 'Stevens') samples, collected during two consecutive crop seasons, were analyzed for fruit rot pathogens. The most frequently isolated pathogens were identified as Allantophomopsis cytisporea, Botrytis cinerea, Coleophoma empetri, Colletotrichum fioriniae, Colletotrichum gloeosporioides, Fusicoccum putrefaciens, Glomerella sp., Phomopsis vaccinii, Phyllosticta elongata, Phyllosticta vaccinii and Physalospora vaccinii. The pathogens Allantophomopsis cytisporea, Phyllosticta spp., and Physalospora vaccinii were found at high incidence. These pathogens were present in all cranberry growing regions, although their mean percentage incidence varied from farm-to-farm and region-to-region. Amongst the pathogens from three phenological stages of cranberry crop examined, ripe fruit had the highest percentage incidence of fruit rot pathogens compared to that of flowers or green fruit; thus, indicating their presence at the early stages of crop development. The efficacy to inhibit the mycelial growth and spore germination of the fruit rot pathogens by twenty six fungicides, belonging to nine different modes of actions, were evaluated in vitro. The copper-based fungicides and captan of group M, flutriafol, triforine, difenoconazole, prothioconazole and propiconazole of group 3, benzovindiflupyr of group 7, and fosetyl-Al of group 33 demonstrated a high degree of efficacy in inhibiting the mycelial growth of all fruit rot pathogens. The fungicides chlorothalonil of group M, fenbuconazole of group 3, pyrimethanil and cyprodinil of group 9, and fludioxonil of group 12 also demonstrated activity against most fruit rot pathogens. The copper-based fungicides, chlorothalonil, captan, flutriafol, triforine, difenoconazole, prothioconazole, propiconazole, benzovindiflupyr, and fosetyl-Al effectively prevented the spore germination of most fruit rot pathogens. This demonstrated activity of the fungicides towards cranberry fruit rot pathogens should be assessed for efficacy in planta under field conditions. The current study identified the most critical fungal pathogens causing fruit rot of cranberry in British Columbia and potential fungicides that could be used in the management of fruit rot and to improve fruit quality and yield.

7.
Neuron ; 111(2): 275-290.e5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36368317

RESUMO

The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.


Assuntos
Claustrum , Camundongos , Animais , Claustrum/fisiologia , Gânglios da Base/fisiologia , Lobo Frontal , Neurônios/fisiologia , Optogenética
8.
Cell Mol Life Sci ; 79(7): 390, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776214

RESUMO

There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, specifically, the search for biomarkers within the low-dose range.


Assuntos
Exposição à Radiação , Humanos , Modelos Biológicos , Radiação Ionizante , Pele
9.
Anal Chem ; 93(40): 13467-13474, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582178

RESUMO

Illicit drug use causes over half a million deaths worldwide every year. Drugs of abuse are commonly smuggled through customs and border checkpoints and, increasingly, through parcel delivery services. Improved methods for detection of trace drug residues from surfaces are needed. Such methods should be robust, fieldable, sensitive, and capable of detecting a wide range of drugs. In this work, commercially produced paper with a pressure-sensitive adhesive coating was utilized for the collection and analysis of trace drug residues by paper spray mass spectrometry (MS). This modified substrate was used to combine sample collection of drug residues from surfaces with rapid detection using a single paper spray ticket. The all-in-one ticket was used to probe different surfaces commonly encountered in forensic work including clothing, cardboard, glass, concrete, asphalt, and aluminum. A total of 10 drugs (acetyl fentanyl, fentanyl, clonazolam, cocaine, heroin, ketamine, methamphetamine, methylone, U-47700, and XLR-11) were evaluated and found to be detectable in the picogram range using a benchtop mass spectrometer and in the low nanogram range using a portable ion trap MS. The novel approach demonstrates a simple yet effective sampling strategy, allowing for rapid identification from difficult surfaces via paper spray mass spectrometry.


Assuntos
Resíduos de Drogas , Drogas Ilícitas , Adesivos , Benzodiazepinas , Drogas Desenhadas , Drogas Ilícitas/análise , Limite de Detecção , Espectrometria de Massas , Papel
10.
Arch Toxicol ; 94(9): 3249-3264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720192

RESUMO

The inhibition of acetylcholinesterase is regarded as the primary toxic mechanism of action for chemical warfare agents. Recently, there have been numerous reports suggesting that metabolic processes could significantly contribute to toxicity. As such, we applied a multi-omics pipeline to generate a detailed cascade of molecular events temporally occurring in guinea pigs exposed to VX. Proteomic and metabolomic profiling resulted in the identification of several enzymes and metabolic precursors involved in glycolysis and the TCA cycle. All lines of experimental evidence indicated that there was a blockade of the TCA cycle at isocitrate dehydrogenase 2, which converts isocitrate to α-ketoglutarate. Using a primary beating cardiomyocyte cell model, we were able to determine that the supplementation of α-ketoglutarate subsequently rescued cells from the acute effects of VX poisoning. This study highlights the broad impacts that VX has and how understanding these mechanisms could result in new therapeutics such as α-ketoglutarate.


Assuntos
Acetilcolinesterase/metabolismo , Agentes Neurotóxicos/toxicidade , Intoxicação/tratamento farmacológico , Proteoma/efeitos dos fármacos , Animais , Substâncias para a Guerra Química/toxicidade , Cobaias , Redes e Vias Metabólicas , Metabolômica , Intoxicação/metabolismo , Proteômica
11.
Curr Biol ; 29(10): 1592-1605.e5, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31056388

RESUMO

Sensory selection and movement locally and globally modulate neural responses in seemingly similar ways. For example, locomotion enhances visual responses in mouse primary visual cortex (V1), resembling the effects of spatial attention on primate visual cortical activity. However, interactions between these local and global mechanisms and the resulting effects on perceptual behavior remain largely unknown. Here, we describe a novel mouse visual spatial selection task in which animals either monitor one of two locations for a contrast change ("selective mice") or monitor both ("non-selective mice") and can run at will. Selective mice perform well only when their selected stimulus changes, giving rise to local electrophysiological changes in the corresponding hemisphere of V1 including decreased noise correlations and increased visual information. Non-selective mice perform well when either stimulus changes, giving rise to global changes across both hemispheres of V1. During locomotion, selective mice have worse behavioral performance, increased noise correlations in V1, and decreased visual information, while non-selective mice have decreased noise correlations in V1 but no change in performance or visual information. Our findings demonstrate that mice can locally or globally enhance visual information, but the interaction of the global effect of locomotion with local selection impairs behavioral performance. Moving forward, this mouse model will facilitate future studies of local and global sensory modulatory mechanisms and their effects on behavior.


Assuntos
Locomoção/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Distribuição Aleatória
12.
J Chromatogr A ; 1601: 205-213, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31060786

RESUMO

Saliva is increasingly being targeted for metabolic studies due to its non-invasive collection methods. Tracing levels of certain metabolites within biofluids can provide indications for a myriad of physiological conditions. This study was performed on a panel of eight analytes found in saliva that have shown associations with physiological conditions of human performance, such as stress, inflammation, and circadian rhythm. This dual polarity liquid chromatography tandem mass spectrometric (LCMS/MS) method was developed to accommodate a diverse group of analytes including steroids, alkaloids, and neurotransmitters. Samples collected during field exercises from soldiers were compared to those of civilians and baseline levels of each of these compounds was determined in saliva. Although most analytes showed no significant differences between the two populations, relative cortisol levels were higher for soldiers than for civilians. This developed dual polarity LCMS/MS method can be applied to very diverse groups of salivary analytes simultaneously.


Assuntos
Cromatografia Líquida , Testes de Química Clínica/métodos , Dopagem Esportivo/prevenção & controle , Substâncias para Melhoria do Desempenho/análise , Saliva/química , Espectrometria de Massas em Tandem , Alcaloides/análise , Humanos , Neurotransmissores/análise , Substâncias para Melhoria do Desempenho/metabolismo , Esteroides/análise
13.
Toxicol Sci ; 167(2): 524-535, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321427

RESUMO

Despite the recent epidemic of fentanyl abuse, there are few validated assays capable of rapidly detecting these compounds. In order to improve the ability to detect carfentanil at physiologically relevant concentrations, we developed a systems biology approach to discover host-based markers which are specifically amplified upon exposure in a rabbit model. For this work, two "omics" pipelines utilizing mass spectrometry were developed and leveraged. First, a proteomics pipeline was developed to interrogate the blood plasma for protein-based biomarkers. Due to the incredible dynamic range of the plasma protein content, a multi-dimensional fractionation technique was used to partition and more accurately investigate the circulating plasma proteome. Isobaric tandem mass tags were integrated into the workflow to make quantitative assessments across all animals for an extended time course post-exposure. In addition to the proteomics efforts, blood plasma was also processed through an untargeted metabolomics pipeline. This approach allows for the identification of >800 small molecule features. By processing and analyzing data sets in parallel, we were able to identify a unique fingerprint of protein and metabolite perturbations that manifest following exposure to carfentanil.


Assuntos
Analgésicos Opioides/sangue , Exposição Ambiental/análise , Fentanila/análogos & derivados , Exposição por Inalação/análise , Metabolômica/métodos , Proteômica/métodos , Animais , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Cromatografia de Fase Reversa , Fentanila/sangue , Masculino , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Metabolômica/instrumentação , Proteômica/instrumentação , Coelhos
14.
J Am Soc Mass Spectrom ; 29(12): 2436-2442, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30280314

RESUMO

Currently, all assays measuring acetylcholinesterase (AChE) activity following a suspected nerve agent exposure leverage methodologies that fail to identify the agent. This limits the overall effectiveness and ability to administer proper countermeasures. As such, there is an urgent need to identify novel, rapid, and more comprehensive approaches to establish AChE activity, including identification of the toxicant. Paper spray mass spectrometry was used to monitor the activity of acetylcholinesterase, both in-solution and on modified hydrophobic paper surface. Hydrophobic paper surfaces were prepared using vaporized trichloro(3,3,3-trifluoropropyl)silane. In both approaches, mixtures of diluted human whole blood with and without VX were mixed with a non-endogenous AChE specific substrate, 1,1-dimethyl-4-acetylthiomethylpiperidinium (MATP+). Formation of the cleaved MATP+ product was monitored over time and compared to MATP+ to determine relative AChE activity. This on-substrate assay was effective at determining AChE activity and identifying the toxicant; however, determination of AChE activity in-solution proceeded at a slower rate. The on-substrate assay serves as a pioneering example of an enzymatic reaction occurring on the surface of a paper spray ionization ticket. This work broadens the range of applications relating to paper spray ionization-based clinical diagnostic assays. Graphical Abstract ᅟ.


Assuntos
Acetilcolinesterase/sangue , Acetilcolinesterase/metabolismo , Ensaios Enzimáticos/métodos , Espectrometria de Massas/métodos , Humanos , Papel , Piperidinas
15.
Rapid Commun Mass Spectrom ; 32(23): 1979-1983, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30153356

RESUMO

RATIONALE: The analysis of chemical warfare agents (CWAs) from ambient atmosphere presents an analytical challenge due to their ease of degradation and volatility. Herein is described a method for derivatizing CWAs directly onto a paper spray substrate prior to analysis. This derivatization allows for much longer times of analysis without sample degradation and with little to no sample preparation. METHODS: Derivatization was performed using 2-[(dimethylamino)methyl] phenol both in-vial and directly on paper spray cartridges. Solution studies were carried out over time and samples were analyzed via liquid chromatography/tandem mass spectrometry (LC/MS/MS) operated in positive ion mode. Paper spray substrates impregnated with the derivatizing agent prior to CWA vapor capture were also analyzed over time using a mass spectrometer operated in positive ion mode. RESULTS: Use of 2-[(dimethylamino)methyl] phenol as a paper spray substrate dopant enables derivatization of G-series compounds into lower volatility complexes. The reaction occurs in solution and in the vapor phase. This new technique effectively traps and captures G-series agents for analysis while extending the time for which the compound remains absorbed. The complex is highly suitable for direct analysis via paper spray mass spectrometry. CONCLUSIONS: Derivatization of paper spray substrates was shown to greatly increase the time for analysis of CWAs. This technique, combined with the vapor phase capture stage outlined previously, allows for rapid, quantitative CWA detection by paper spray ionization with little or no sample preparation.


Assuntos
Substâncias para a Guerra Química/química , Espectrometria de Massas em Tandem/métodos , Compostos Orgânicos Voláteis/química , Cromatografia Líquida/métodos , Papel
16.
J Am Soc Mass Spectrom ; 29(8): 1555-1566, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29881996

RESUMO

Since their inception, mass spectrometers have played a pivotal role in the direction and application of synthetic chemical research. The ability to develop new instrumentation to solve current analytical challenges in this area has always been at the heart of mass spectrometry, although progress has been slow at times. Herein, we briefly review the history of how mass spectrometry has been used to approach challenges in organic chemistry, how new developments in portable instrumentation and ambient ionization have been used to open novel areas of research, and how current techniques have the ability to expand on our knowledge of synthetic mechanisms and kinetics. Lastly, we discuss the relative paucity of work done in recent years to embrace the concept of improving benchtop synthetic chemistry with mass spectrometry, the disconnect between applications and fundamentals within these studies, and what hurdles still need to be overcome. Graphical Abstract.

17.
Forensic Sci Int ; 288: 278-282, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29787972

RESUMO

Impurity profiling has been used as a useful tool for analyzing nearly every drug class currently known on the illicit market. Impurities present within seized samples have the potential to determine source of origin, route of synthesis used, as well as provide a useful clue into the potential reaction mechanisms that are present for each synthetic procedure. Perhaps the most well studied of these impurity profiles exists for methamphetamine, including information to more than one route of synthesis. Within the present study, a complete synthesis of methamphetamine was performed, including a reductive amination of phenylpropanone (P2P) using methylamine hydrochloride and sodium triacetoxyborohydride (STAB) rather than the conventional aluminum mercury amalgam commonly found in the literature. During the analysis of the final product from this reaction, a major impurity within the reaction, bis(1-phenylpropan-2-yl)amine (m/z 253), was detected by GC-MS as well as direct-infusion ESI-MS. This impurity has been previously reported as a Leuckart route-specific impurity. Its detection within the reductive amination of P2P points towards the use of impure methylamine hydrochloride containing some traces of acid, and provides further insight into the reductive amination of P2P. In both the Leuckart reaction and this reductive amination via STAB, the presence of acid and ammonia leads to this impurity.


Assuntos
Contaminação de Medicamentos , Drogas Ilícitas/síntese química , Metanfetamina/síntese química , Aminação , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução
18.
Sci Total Environ ; 573: 382-388, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572531

RESUMO

We present an analysis of ambient benzene, toluene, and xylene isomers in the Eagle Ford shale region of southern Texas. In situ air quality measurements using membrane inlet mobile mass spectrometry revealed ambient benzene and toluene concentrations as high as 1000 and 5000 parts-per-billion, respectively, originating from specific sub-processes on unconventional oil and gas well pad sites. The detection of highly variant contamination events attributable to natural gas flaring units, condensate tanks, compressor units, and hydrogen sulfide scavengers indicates that mechanical inefficiencies, and not necessarily the inherent nature of the extraction process as a whole, result in the release of these compounds into the environment. This awareness of ongoing contamination events contributes to an enhanced knowledge of ambient volatile organic compounds on a regional scale. While these reconnaissance measurements on their own do not fully characterize the fluctuations of ambient BTEX concentrations that likely exist in the atmosphere of the Eagle Ford Shale region, they do suggest that contamination events from unconventional oil and gas development can be monitored, controlled, and reduced.


Assuntos
Poluentes Atmosféricos/análise , Benzeno/análise , Monitoramento Ambiental/métodos , Indústria de Petróleo e Gás , Tolueno/análise , Xilenos/análise , Poluição do Ar , Texas
19.
Anal Chem ; 87(22): 11501-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26457561

RESUMO

The ability to detect atmospheric effluent from clandestine methamphetamine manufacture is a useful tool for law enforcement. A membrane inlet mass spectrometer is mounted onto an all-electric drive capable hybrid vehicle that samples the atmosphere while in motion. Attributing a latitude and longitude to each spectrum collected, unique chemical fingerprints from clandestine manufacture are then mapped. This location-based mass spectrum data provides a localization to an area of interest. The synthesis of methamphetamine precursors was performed, and the impurities from such reactions were observed. A mock manufacture was setup, and the impurities were introduced into the atmosphere via heating. The detection of products and impurities using this mobile platform has shown the effectiveness of locating and localizing the manufacture of methamphetamine.


Assuntos
Espectrometria de Massas/instrumentação , Metanfetamina/análise , Atmosfera/química , Comportamento Criminoso , Laboratórios , Estrutura Molecular
20.
J Comp Neurol ; 521(5): 1165-83, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22987813

RESUMO

The relationships between protein synthesis and neuronal survival are poorly understood. In chicken nucleus magnocellularis (NM), significant alterations in overall protein synthesis precede neuronal death induced by deprivation of excitatory afferent activity. Previously we demonstrated an initial reduction in the overall rate of protein synthesis in all deprived NM neurons, followed by quick recovery (starting at 6 hours) in some, but not all, neurons. Neurons with recovered protein synthesis ultimately survive, whereas others become "ghost" cells (no detectable Nissl substance) at 12-24 hours and die within 48 hours. To explore the mechanisms underlying this differential influence of afferent input on protein synthesis and cell survival, the current study investigates the involvement of eukaryotic translation elongation factor 2 (eEF2), the phosphorylation of which reduces overall protein synthesis. Using immunocytochemistry for either total or phosphorylated eEF2 (p-eEF2), we found significant reductions in the level of phosphorylated, but not total, eEF2 in NM neurons as early as 0.5-1 hour following cochlea removal. Unexpectedly, neurons with low levels of p-eEF2 show reduced protein synthesis at 6 hours, indicated by a marker for active ribosomes. At 12 hours, all "ghost" cells exhibited little or no p-eEF2 staining, although not every neuron with a comparable low level of p-eEF2 was a "ghost" cell. These observations demonstrate that a reduced level of p-eEF2 is not responsible for immediate responses (including reduced overall protein synthesis) of a neuron to compromised afferent input but may impair the neuron's ability to initiate recovery signaling for survival and make the neuron more vulnerable to death.


Assuntos
Vias Auditivas/fisiologia , Tronco Encefálico , Regulação da Expressão Gênica/fisiologia , Fator 2 de Elongação de Peptídeos/metabolismo , Animais , Animais Recém-Nascidos , Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular , Galinhas , Cóclea/fisiologia , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/fisiologia , Monoéster Fosfórico Hidrolases/farmacologia , Fosforilação/fisiologia , RNA/metabolismo , Privação Sensorial/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA